These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10471697)

  • 81. The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing.
    Xu Q; Johnston GC; Singer RA
    Mol Cell Biol; 1993 Dec; 13(12):7553-65. PubMed ID: 8246972
    [TBL] [Abstract][Full Text] [Related]  

  • 82. SUM1, an apparent positive regulator of the cryptic mating-type loci in Saccharomyces cerevisiae.
    Klar AJ; Kakar SN; Ivy JM; Hicks JB; Livi GP; Miglio LM
    Genetics; 1985 Dec; 111(4):745-58. PubMed ID: 3905506
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Telomere-mediated plasmid segregation in Saccharomyces cerevisiae involves gene products required for transcriptional repression at silencers and telomeres.
    Longtine MS; Enomoto S; Finstad SL; Berman J
    Genetics; 1993 Feb; 133(2):171-82. PubMed ID: 8436267
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Sif2p interacts with Sir4p amino-terminal domain and antagonizes telomeric silencing in yeast.
    Cockell M; Renauld H; Watt P; Gasser SM
    Curr Biol; 1998 Jun; 8(13):787-90. PubMed ID: 9651685
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin.
    Casey L; Patterson EE; Müller U; Fox CA
    Mol Biol Cell; 2008 Feb; 19(2):608-22. PubMed ID: 18045995
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The ZDS1 and ZDS2 proteins require the Sir3p component of yeast silent chromatin to enhance the stability of short linear centromeric plasmids.
    Roy N; Runge KW
    Chromosoma; 1999 Jul; 108(3):146-61. PubMed ID: 10398844
    [TBL] [Abstract][Full Text] [Related]  

  • 87. An unusual form of transcriptional silencing in yeast ribosomal DNA.
    Smith JS; Boeke JD
    Genes Dev; 1997 Jan; 11(2):241-54. PubMed ID: 9009206
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae.
    Dror V; Winston F
    Mol Cell Biol; 2004 Sep; 24(18):8227-35. PubMed ID: 15340082
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae.
    Kim S; Benguria A; Lai CY; Jazwinski SM
    Mol Biol Cell; 1999 Oct; 10(10):3125-36. PubMed ID: 10512855
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression.
    Maillet L; Boscheron C; Gotta M; Marcand S; Gilson E; Gasser SM
    Genes Dev; 1996 Jul; 10(14):1796-811. PubMed ID: 8698239
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae.
    Huang H; Kahana A; Gottschling DE; Prakash L; Liebman SW
    Mol Cell Biol; 1997 Nov; 17(11):6693-9. PubMed ID: 9343433
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Activation of an MAP kinase cascade leads to Sir3p hyperphosphorylation and strengthens transcriptional silencing.
    Stone EM; Pillus L
    J Cell Biol; 1996 Nov; 135(3):571-83. PubMed ID: 8909534
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae.
    Kennedy BK; Gotta M; Sinclair DA; Mills K; McNabb DS; Murthy M; Pak SM; Laroche T; Gasser SM; Guarente L
    Cell; 1997 May; 89(3):381-91. PubMed ID: 9150138
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sir3p domains involved in the initiation of telomeric silencing in Saccharomyces cerevisiae.
    Park Y; Hanish J; Lustig AJ
    Genetics; 1998 Nov; 150(3):977-86. PubMed ID: 9799252
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mutations in the nucleosome core enhance transcriptional silencing.
    Xu EY; Bi X; Holland MJ; Gottschling DE; Broach JR
    Mol Cell Biol; 2005 Mar; 25(5):1846-59. PubMed ID: 15713639
    [TBL] [Abstract][Full Text] [Related]  

  • 96. SUM1-1: a suppressor of silencing defects in Saccharomyces cerevisiae.
    Laurenson P; Rine J
    Genetics; 1991 Nov; 129(3):685-96. PubMed ID: 1752414
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity.
    Schild D
    Genetics; 1995 May; 140(1):115-27. PubMed ID: 7635279
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A novel allele of SIR2 reveals a heritable intermediate state of gene silencing.
    Farris D; Saxton DS; Rine J
    Genetics; 2021 May; 218(1):. PubMed ID: 33713126
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Establishment of transcriptional silencing in the absence of DNA replication.
    Li YC; Cheng TH; Gartenberg MR
    Science; 2001 Jan; 291(5504):650-3. PubMed ID: 11158677
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex.
    Sutton A; Heller RC; Landry J; Choy JS; Sirko A; Sternglanz R
    Mol Cell Biol; 2001 May; 21(10):3514-22. PubMed ID: 11313477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.