These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10471786)

  • 1. Bromine K-edge EXAFS studies of bromide binding to bromoperoxidase from Ascophyllum nodosum.
    Dau H; Dittmer J; Epple M; Hanss J; Kiss E; Rehder D; Schulzke C; Vilter H
    FEBS Lett; 1999 Aug; 457(2):237-40. PubMed ID: 10471786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A (17)O NMR study of peroxide binding to the active centre of bromoperoxidase from Ascophyllum nodosum.
    Casný M; Rehder D; Schmidt H; Vilter H; Conte V
    J Inorg Biochem; 2000 May; 80(1-2):157-60. PubMed ID: 10885479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines.
    Soedjak HS; Butler A
    Biochemistry; 1990 Aug; 29(34):7974-81. PubMed ID: 2261454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution XANES studies on vanadium-containing haloperoxidase: pH-dependence and substrate binding.
    Küsthardt U; Hedman B; Hodgson KO; Hahn R; Vilter H
    FEBS Lett; 1993 Aug; 329(1-2):5-8. PubMed ID: 8354407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate binding to vanadate-dependent bromoperoxidase from Ascophyllum nodosum: a vanadium K-edge XAS approach.
    Christmann U; Dau H; Haumann M; Kiss E; Liebisch P; Rehder D; Santoni G; Schulzke C
    Dalton Trans; 2004 Aug; (16):2534-40. PubMed ID: 15303169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction mechanism of the novel vanadium-bromoperoxidase. A steady-state kinetic analysis.
    de Boer E; Wever R
    J Biol Chem; 1988 Sep; 263(25):12326-32. PubMed ID: 3410844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadium K-edge absorption spectrum of bromoperoxidase from Ascophyllum nodosum.
    Hormes J; Kuetgens U; Chauvistre R; Schreiber W; Anders N; Vilter H; Rehder D; Weidemann C
    Biochim Biophys Acta; 1988 Oct; 956(3):293-9. PubMed ID: 3167074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum.
    Arber JM; de Boer E; Garner CD; Hasnain SS; Wever R
    Biochemistry; 1989 Sep; 28(19):7968-73. PubMed ID: 2611224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum.
    Wischang D; Radlow M; Schulz H; Vilter H; Viehweger L; Altmeyer MO; Kegler C; Herrmann J; Müller R; Gaillard F; Delage L; Leblanc C; Hartung J
    Bioorg Chem; 2012 Oct; 44():25-34. PubMed ID: 22884431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase from Macrocystis pyrifera and Fucus distichus: steady state kinetic analysis and comparison to the mechanism of V-BrPO from Ascophyllum nodosum.
    Soedjak HS; Butler A
    Biochim Biophys Acta; 1991 Aug; 1079(1):1-7. PubMed ID: 1888757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water and bromide in the active center of vanadate-dependent haloperoxidases.
    Rehder D; Schulzke C; Dau H; Meinke C; Hanss J; Epple M
    J Inorg Biochem; 2000 May; 80(1-2):115-21. PubMed ID: 10885471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bromine is an endogenous component of a vanadium bromoperoxidase.
    Feiters MC; Leblanc C; Küpper FC; Meyer-Klaucke W; Michel G; Potin P
    J Am Chem Soc; 2005 Nov; 127(44):15340-1. PubMed ID: 16262376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the regiospecificity of vanadium bromoperoxidase.
    Martinez JS; Carroll GL; Tschirret-Guth RA; Altenhoff G; Little RD; Butler A
    J Am Chem Soc; 2001 Apr; 123(14):3289-94. PubMed ID: 11457064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis.
    ten Brink HB; Schoemaker HE; Wever R
    Eur J Biochem; 2001 Jan; 268(1):132-8. PubMed ID: 11121113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The brown alga Ascophyllum nodosum contains two different vanadium bromoperoxidases.
    Krenn BE; Tromp MG; Wever R
    J Biol Chem; 1989 Nov; 264(32):19287-92. PubMed ID: 2553736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of vanadium bromoperoxidase: formation of 2-oxohistidine.
    Meister Winter GE; Butler A
    Biochemistry; 1996 Sep; 35(36):11805-11. PubMed ID: 8794762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of vanadium-containing bromoperoxidases.
    Wever R; Krenn BE; De Boer E; Offenberg H; Plat H
    Prog Clin Biol Res; 1988; 274():477-93. PubMed ID: 3406034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadate-dependent bromoperoxidases from Ascophyllum nodosum in the synthesis of brominated phenols and pyrroles.
    Wischang D; Radlow M; Hartung J
    Dalton Trans; 2013 Sep; 42(33):11926-40. PubMed ID: 23881071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bromoperoxidase activity and vanadium level of the brown alga Ascophyllum nodosum.
    Hartung J; Brücher O; Hach D; Schulz H; Vilter H; Ruick G
    Phytochemistry; 2008 Nov; 69(16):2826-30. PubMed ID: 18945460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the catalytic site of vanadium bromoperoxidase: synthesis and structural characterization of intramolecularly H-bonded vanadium(V) oxoperoxo complexes, [VO(O(2))((NH)2pyg(2))]K and [VO(O(2))((BrNH)2pyg(2))]K.
    Kimblin C; Bu X; Butler A
    Inorg Chem; 2002 Jan; 41(2):161-3. PubMed ID: 11800602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.