BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10471990)

  • 1. Shortening properties of two biochemically defined muscle fibre types of the Norway lobster Nephrops norvegicus L.
    Holmes JM; Hilber K; Galler S; Neil DM
    J Muscle Res Cell Motil; 1999 Apr; 20(3):265-78. PubMed ID: 10471990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-activated and stretch-induced force responses in two biochemically defined muscle fibre types of the Norway lobster.
    Galler S; Neil DM
    J Muscle Res Cell Motil; 1994 Aug; 15(4):390-9. PubMed ID: 7806633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber polymorphism in skeletal muscles of the American lobster, Homarus americanus: continuum between slow-twitch (S1) and slow-tonic (S2) fibers.
    Medler S; Lilley T; Mykles DL
    J Exp Biol; 2004 Jul; 207(Pt 16):2755-67. PubMed ID: 15235004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of skinned muscle fibres from the Norway lobster Nephrops norvegicus L. by manganese ions.
    Holmes JM; Hilber K; Galler S; Neil DM
    J Muscle Res Cell Motil; 1998 Jun; 19(5):537-48. PubMed ID: 9682140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Storage and release of mechanical energy by contracting frog muscle fibres.
    Cavagna GA; Heglund NC; Harry JD; Mantovani M
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):689-708. PubMed ID: 7707236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ dependence of loaded shortening in rat skinned cardiac myocytes and skeletal muscle fibres.
    McDonald KS
    J Physiol; 2000 May; 525 Pt 1(Pt 1):169-81. PubMed ID: 10811735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.
    Altringham JD; Johnston IA
    J Physiol; 1982 Dec; 333():421-49. PubMed ID: 7182472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in maximal activation properties of skinned short- and long-sarcomere muscle fibres from the claw of the freshwater crustacean Cherax destructor.
    West JM; Humphris DC; Stephenson DG
    J Muscle Res Cell Motil; 1992 Dec; 13(6):668-84. PubMed ID: 1491074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium and strontium activation of single skinned muscle fibres of normal and dystrophic mice.
    Fink RH; Stephenson DG; Williams DA
    J Physiol; 1986 Apr; 373():513-25. PubMed ID: 3746681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical and biochemical characterization of two slow fiber types in decapod crustacean muscles.
    Mykles DL
    J Exp Zool; 1988 Mar; 245(3):232-43. PubMed ID: 2968438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.
    Mutungi G; Ranatunga KW
    J Muscle Res Cell Motil; 2001; 22(2):175-84. PubMed ID: 11519740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats.
    Macpherson PC; Dennis RG; Faulkner JA
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions.
    Yasuda K; Shindo Y; Ishiwata S
    Biophys J; 1996 Apr; 70(4):1823-9. PubMed ID: 8785342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in the biochemistry and ultrastructure of the deep abdominal flexor muscle of the norway lobster Nephrops norvegicus during infection by a parasitic dinoflagellate of the genus Hematodinium.
    Stentiford GD; Neil DM; Coombs GH
    Dis Aquat Organ; 2000 Aug; 42(2):133-41. PubMed ID: 11023252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and myosin heavy chain isoform composition of skinned skeletal muscle fibres from a human biopsy sample.
    Hilber K; Galler S
    Pflugers Arch; 1997 Sep; 434(5):551-8. PubMed ID: 9242718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcomere length changes during end-held (isometric) contractions in intact mammalian (rat) fast and slow muscle fibres.
    Mutungi G; Ranatunga KW
    J Muscle Res Cell Motil; 2000; 21(6):565-75. PubMed ID: 11206134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere length dependence of the force-velocity relation in single frog muscle fibers.
    Granzier HL; Burns DH; Pollack GH
    Biophys J; 1989 Mar; 55(3):499-507. PubMed ID: 2784695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres.
    Widrick JJ; Knuth ST; Norenberg KM; Romatowski JG; Bain JL; Riley DA; Karhanek M; Trappe SW; Trappe TA; Costill DL; Fitts RH
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):915-30. PubMed ID: 10200437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.