These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 10472626)
1. Pyrite suspended in artificial sea water catalyzes hydrolysis of adsorbed ATP: enhancing effect of acetate. Tessis AC; Penteado-Fava A; Pontes-Buarque M; De Amorim HS; Bonapace JA; De Souza-Barros F; Vieyra A Orig Life Evol Biosph; 1999 Aug; 29(4):361-74. PubMed ID: 10472626 [TBL] [Abstract][Full Text] [Related]
2. Modulation of adenosine 5'-monophosphate adsorption onto aqueous resident pyrite: potential mechanisms for prebiotic reactions. Pontes-Buarques M; Tessis AC; Bonapace JA; Monte MB; Cortés-Lopez G; De Souza-Barros F; Vieyra A Orig Life Evol Biosph; 2001; 31(4-5):343-62. PubMed ID: 11599175 [TBL] [Abstract][Full Text] [Related]
3. Attachment of Acidithiobacillus ferrooxidans to pyrite in fresh and saline water and fitting to Langmuir and Freundlich isotherms. San Martín F; Kracht W; Vargas T Biotechnol Lett; 2020 Jun; 42(6):957-964. PubMed ID: 32100159 [TBL] [Abstract][Full Text] [Related]
4. Pyrite formation from FeS and H Thiel J; Byrne JM; Kappler A; Schink B; Pester M Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6897-6902. PubMed ID: 30886102 [TBL] [Abstract][Full Text] [Related]
5. Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic --> alkaline transitions. de Souza-Barros F; Braz-Levigard R; Ching-San Y; Monte MM; Bonapace JA; Montezano V; Vieyra A Orig Life Evol Biosph; 2007 Feb; 37(1):27-45. PubMed ID: 16821096 [TBL] [Abstract][Full Text] [Related]
6. Mineral interface in extreme habitats: a niche for primitive molecular evolution for the appearance of different forms of life on earth. de Souza-Barros F; Vieyra A Comp Biochem Physiol C Toxicol Pharmacol; 2007; 146(1-2):10-21. PubMed ID: 17317327 [TBL] [Abstract][Full Text] [Related]
7. Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides. Schreiner E; Nair NN; Wittekindt C; Marx D J Am Chem Soc; 2011 Jun; 133(21):8216-26. PubMed ID: 21561111 [TBL] [Abstract][Full Text] [Related]
8. Lipid extraction and esterification for microalgae-based biodiesel production using pyrite (FeS2). Seo YH; Sung M; Oh YK; Han JI Bioresour Technol; 2015 Sep; 191():420-5. PubMed ID: 25804530 [TBL] [Abstract][Full Text] [Related]
11. The influence of humic acids on the weathering of pyrite: Electrochemical mechanism and environmental implications. Zheng K; Li H; Xu L; Li S; Wang L; Wen X; Liu Q Environ Pollut; 2019 Aug; 251():738-745. PubMed ID: 31112928 [TBL] [Abstract][Full Text] [Related]
12. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques. Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529 [TBL] [Abstract][Full Text] [Related]
13. Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching. Jones GC; van Hille RP; Harrison ST Appl Microbiol Biotechnol; 2013 Mar; 97(6):2735-42. PubMed ID: 22584431 [TBL] [Abstract][Full Text] [Related]
14. Pyrite oxidation by Thiobacillus ferrooxidans with special reference to the sulphur moiety of the mineral. Arkesteyn GJ Antonie Van Leeuwenhoek; 1979; 45(3):423-35. PubMed ID: 45294 [TBL] [Abstract][Full Text] [Related]
15. Comparison of pyrite-phase transition metal sulfides for capturing leaked high concentrations of gaseous elemental mercury in indoor air: Mechanism and adsorption/desorption kinetics. Wang J; Yang Z; Mei J; Wang C; Hong Q; Yang S J Colloid Interface Sci; 2022 Sep; 622():431-442. PubMed ID: 35525146 [TBL] [Abstract][Full Text] [Related]
16. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). Bostick BC; Fendorf S; Helz GR Environ Sci Technol; 2003 Jan; 37(2):285-91. PubMed ID: 12564899 [TBL] [Abstract][Full Text] [Related]
17. Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite. Zhou Y; Huang M; Wang X; Gao J; Fang G; Zhou D Chemosphere; 2020 Aug; 253():126662. PubMed ID: 32268253 [TBL] [Abstract][Full Text] [Related]
18. Photoelectrochemical power, chemical energy and catalytic activity for organic evolution on natural pyrite interfaces. Tributsch H; Fiechter S; Jokisch D; Rojas-Chapana J; Ellmer K Orig Life Evol Biosph; 2003 Apr; 33(2):129-62. PubMed ID: 12967264 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions. Xu N; Christodoulatos C; Braida W Chemosphere; 2006 Mar; 62(10):1726-35. PubMed ID: 16084558 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge. Karikari-Yeboah O; Skinner W; Addai-Mensah J Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]