These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10472753)

  • 1. A theoretical model of the competition between hydrolase and carboxylesterase in protection against organophosphorus poisoning.
    Sweeney RE; Maxwell DM
    Math Biosci; 1999 Sep; 160(2):175-90. PubMed ID: 10472753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The specificity of carboxylesterase protection against the toxicity of organophosphorus compounds.
    Maxwell DM
    Toxicol Appl Pharmacol; 1992 Jun; 114(2):306-12. PubMed ID: 1609424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical expression for the protection associated with stoichiometric and catalytic scavengers in a single compartment model of organophosphorus poisoning.
    Sweeney RE; Maxwell DM
    Math Biosci; 2003 Feb; 181(2):133-43. PubMed ID: 12445758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the effects of diisopropylfluorophosphate, sarin, soman, and tabun on toxicity and brain acetylcholinesterase activity in mice.
    Tripathi HL; Dewey WL
    J Toxicol Environ Health; 1989; 26(4):437-46. PubMed ID: 2709438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of the effectiveness of acetylcholinesterase for detoxification of organophosphorus compounds by bis-quaternary oximes.
    Caranto GR; Waibel KH; Asher JM; Larrison RW; Brecht KM; Schutz MB; Raveh L; Ashani Y; Wolfe AD; Maxwell DM
    Biochem Pharmacol; 1994 Jan; 47(2):347-57. PubMed ID: 8304979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the upper limit of human butyrylcholinesterase dose required for protection against organophosphates toxicity: a mathematically based toxicokinetic model.
    Ashani Y; Pistinner S
    Toxicol Sci; 2004 Feb; 77(2):358-67. PubMed ID: 14600276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel bifunctional hybrid small molecule scavengers for mitigating nerve agents toxicity.
    Amitai G; Gez R; Raveh L; Bar-Ner N; Grauer E; Chapman S
    Chem Biol Interact; 2016 Nov; 259(Pt B):187-204. PubMed ID: 27129421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of carboxylesterase in soman, sarin and tabun poisoning in rats.
    Jokanović M
    Pharmacol Toxicol; 1989 Sep; 65(3):181-4. PubMed ID: 2813290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxylesterase: specificity and spontaneous reactivation of an endogenous scavenger for organophosphorus compounds.
    Maxwell DM; Brecht KM
    J Appl Toxicol; 2001 Dec; 21 Suppl 1():S103-7. PubMed ID: 11920929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of comparative acute toxicity of diisopropyl-fluorophosphate, tabun, sarin, and soman in relation to cholinergic and GABAergic enzyme activities in rats.
    Sivam SP; Hoskins B; Ho IK
    Fundam Appl Toxicol; 1984 Aug; 4(4):531-8. PubMed ID: 6479498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents.
    Albuquerque EX; Pereira EF; Aracava Y; Fawcett WP; Oliveira M; Randall WR; Hamilton TA; Kan RK; Romano JA; Adler M
    Proc Natl Acad Sci U S A; 2006 Aug; 103(35):13220-5. PubMed ID: 16914529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of inhibitors and other factors on cholinesterases.
    Bajgar J
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1991; 34(1):5-77. PubMed ID: 1759111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A.
    Bouknight KD; Jurkouich KM; Compton JR; Khavrutskii IV; Guelta MA; Harvey SP; Legler PM
    Biochem Pharmacol; 2020 Jul; 177():113980. PubMed ID: 32305437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholinesterase prophylaxis against organophosphate toxicity.
    Wolfe AD; Rush RS; Doctor BP; Koplovitz I; Jones D
    Fundam Appl Toxicol; 1987 Aug; 9(2):266-70. PubMed ID: 3653568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of organophosphate-inactivated esterases with phosphotriesterase.
    Tuovinen K; Kaliste-Korhonen E; Raushel FM; Hänninen O
    Fundam Appl Toxicol; 1996 Jun; 31(2):210-7. PubMed ID: 8789787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholinesterase inhibition: does it explain the toxicity of organophosphorus compounds?
    Maxwell DM; Brecht KM; Koplovitz I; Sweeney RE
    Arch Toxicol; 2006 Nov; 80(11):756-60. PubMed ID: 16770629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of OpdA, an organophosphorus (OP) hydrolase, prevents lethality in an African green monkey model of acute OP poisoning.
    Jackson CJ; Carville A; Ward J; Mansfield K; Ollis DL; Khurana T; Bird SB
    Toxicology; 2014 Mar; 317():1-5. PubMed ID: 24447378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation and detoxification of organophosphorus pesticides in freshwater planarians shares similarities with humans.
    Ireland D; Rabeler C; Gong T; Collins ES
    Arch Toxicol; 2022 Dec; 96(12):3233-3243. PubMed ID: 36173421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of polyethylene glycol-conjugated recombinant human acetylcholinesterase and serum human butyrylcholinesterase as bioscavengers of organophosphate compounds.
    Cohen O; Kronman C; Raveh L; Mazor O; Ordentlich A; Shafferman A
    Mol Pharmacol; 2006 Sep; 70(3):1121-31. PubMed ID: 16801396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Today's threat of use of organophosphorus compounds].
    Sokołowski R; Płusa T
    Pol Merkur Lekarski; 2015 Sep; 39(231):176-80. PubMed ID: 26449583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.