These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10473208)

  • 1. Source localization in an inhomogeneous physical thorax phantom.
    Tenner U; Haueisen J; Nowak H; Leder U; Brauer H
    Phys Med Biol; 1999 Aug; 44(8):1969-81. PubMed ID: 10473208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive vortex currents in magneto- and electrocardiography: comparison of magnetic and electric signal strengths.
    Dutz S; Bellemann ME; Leder U; Haueisen J
    Phys Med Biol; 2006 Jan; 51(1):145-51. PubMed ID: 16357437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vortex shaped current sources in a physical torso phantom.
    Liehr M; Haueisen J; Goernig M; Seidel P; Nenonen J; Katila T
    Ann Biomed Eng; 2005 Feb; 33(2):240-7. PubMed ID: 15771278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of inhomogeneous volume conductor models on the ECG and the MCG.
    Bruder H; Scholz B; Abraham-Fuchs K
    Phys Med Biol; 1994 Nov; 39(11):1949-68. PubMed ID: 15560004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model.
    Mäntynen V; Konttila T; Stenroos M
    Phys Med Biol; 2014 Dec; 59(23):7141-58. PubMed ID: 25365547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonfluoroscopic localization of an amagnetic catheter in a realistic torso phantom by magnetocardiographic and body surface potential mapping.
    Fenici R; Pesola K; Mäkijärvi M; Nenonen J; Teener U; Fenici P; Katila T
    Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 2):2485-91. PubMed ID: 9825372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomagnetic localization of electrical current sources in the human heart with realistic volume conductors using the single-current-dipole model.
    Bruder H; Killmann R; Moshage W; Weismüller P; Achenbach S; Bömmel F
    Phys Med Biol; 1994 Apr; 39(4):655-68. PubMed ID: 15552076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of volume conductor and source models to localize epileptic foci.
    Fuchs M; Wagner M; Kastner J
    J Clin Neurophysiol; 2007 Apr; 24(2):101-19. PubMed ID: 17414966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume conductor effects involved in the genesis of the P wave.
    van Dam PM; van Oosterom A
    Europace; 2005 Sep; 7 Suppl 2():30-8. PubMed ID: 16102501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study on the effect of the anisotropic regions in a realistically shaped torso phantom.
    Sengül G; Liehr M; Haueisen J; Baysal U
    Ann Biomed Eng; 2008 Nov; 36(11):1836-43. PubMed ID: 18759108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new strategy for easy volume conductor modelling in magnetocardiography.
    Tedeschi W; Müller HP; Schless B; Grebe O; Hombach V; Neves UP; Baffa O; Erné SN
    J Med Eng Technol; 2005; 29(1):33-7. PubMed ID: 15764380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of a dipolar source in a skull phantom: realistic versus spherical model.
    Menninghaus E; Lütkenhöner B; Gonzalez SL
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):986-9. PubMed ID: 7959806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of torso inhomogeneities on body surface potentials quantified using "tailored" geometry.
    van Oosterom A; Huiskamp GJ
    J Electrocardiol; 1989 Jan; 22(1):53-72. PubMed ID: 2921579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of geometric and topologic differences in boundary element models on magnetocardiographic localization accuracy.
    Pesola K; Lötjönen J; Nenonen J; Magnin IE; Lauerma K; Fenici R; Katila T
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1237-47. PubMed ID: 11008425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonfluoroscopic localization of an amagnetic stimulation catheter by multichannel magnetocardiography.
    Fenici R; Nenonen J; Pesola K; Korhonen P; Lötjönen J; Mäkijärvi M; Toivonen L; Poutanen VP; Keto P; Katila T
    Pacing Clin Electrophysiol; 1999 Aug; 22(8):1210-20. PubMed ID: 10461298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom.
    Liehr M; Haueisen J
    Phys Med Biol; 2008 Jan; 53(1):245-54. PubMed ID: 18182700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for magnetocardiography functional localization based on boundary element method and Nelder-Mead simplex algorithm.
    Lu Z; Jiang D; Yang J
    Ann Noninvasive Electrocardiol; 2021 Nov; 26(6):e12879. PubMed ID: 34250679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved boundary element method for realistic volume-conductor modeling.
    Fuchs M; Drenckhahn R; Wischmann HA; Wagner M
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):980-97. PubMed ID: 9691573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimal order for ECG inverse problems with MDL.
    Nakamura H; Aoki T; Tanaka H
    Medinfo; 1995; 8 Pt 1():736-9. PubMed ID: 8591314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.