BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10473296)

  • 1. Distribution patterns of vimentin-immunoreactive structures in the human prosencephalon during the second half of gestation.
    Ulfig N; Neudörfer F; Bohl J
    J Anat; 1999 Jul; 195 ( Pt 1)(Pt 1):87-100. PubMed ID: 10473296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of glial development in the human foetal spinal cord during the late first and second trimester.
    Weidenheim KM; Epshteyn I; Rashbaum WK; Lyman WD
    J Neurocytol; 1994 Jun; 23(6):343-53. PubMed ID: 7522270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.
    Voigt T
    J Comp Neurol; 1989 Nov; 289(1):74-88. PubMed ID: 2808761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth.
    Wu DY; Jhaveri S; Schneider GE
    J Comp Neurol; 1995 Jul; 358(2):206-18. PubMed ID: 7560282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of vimentin-immunoreactive radial glial cells in the primary visual cortex of the cat.
    Engel AK; Müller CM
    J Neurocytol; 1989 Aug; 18(4):437-50. PubMed ID: 2809633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient architectonic features in the basolateral amygdala of the human fetal brain.
    Ulfig N; Setzer M; Bohl J
    Acta Anat (Basel); 1998; 163(2):99-112. PubMed ID: 9873139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial organization and chondroitin sulfate proteoglycan expression in the developing thalamus.
    Mitrofanis J; Earle KL; Reese BE
    J Neurocytol; 1997 Feb; 26(2):83-100. PubMed ID: 9181483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of glia and blood vessels in the internal capsule of rats.
    Earle KL; Mitrofanis J
    J Neurocytol; 1998 Feb; 27(2):127-39. PubMed ID: 9609403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial fibrillary acidic protein and vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex: an immunocytochemical study.
    Lazzari M; Franceschini V; Ciani F
    J Hirnforsch; 1997; 38(2):187-94. PubMed ID: 9176731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of astroglial cells in the proliferative matrices, the granule cell layer, and the hippocampal fissure of the hamster dentate gyrus.
    Sievers J; Hartmann D; Pehlemann FW; Berry M
    J Comp Neurol; 1992 Jun; 320(1):1-32. PubMed ID: 1401238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.
    Oudega M; Marani E
    J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of adult Podarcis sicula (Squamata, Lacertidae).
    Lazzari M; Franceschini V
    J Anat; 2001 Jan; 198(Pt 1):67-75. PubMed ID: 11215769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies.
    Yanes C; Monzon-Mayor M; Ghandour MS; de Barry J; Gombos G
    J Comp Neurol; 1990 May; 295(4):559-68. PubMed ID: 2358521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.
    deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R
    J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial-like cells of the rat pituitary intermediate lobe change morphology and shift from vimentin to GFAP expression during development.
    Gary KA; Sands SA; Chronwall BM
    Int J Dev Neurosci; 1995 Oct; 13(6):555-65. PubMed ID: 8553890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of radial glial cells during the development of the rat dentate gyrus.
    Rickmann M; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(4):449-79. PubMed ID: 3680638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telencephalic and diencephalic origin of radial glial processes in the developing preoptic area/anterior hypothalamus.
    Tobet SA; Paredes RG; Chickering TW; Baum MJ
    J Neurobiol; 1995 Jan; 26(1):75-86. PubMed ID: 7714527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid replacement of vimentin-containing radial glia by glial fibrillary acidic protein-containing astrocytes in transplanted telencephalon.
    Tuba A; Kállai L; Kálmán M
    J Neural Transplant Plast; 1997; 6(1):21-9. PubMed ID: 8959548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: a Golgi study.
    Marín-Padilla M
    J Comp Neurol; 1995 Jul; 357(4):554-72. PubMed ID: 7545703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.