BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10473427)

  • 1. Enhanced (+)-catechin transglucosylating activity of Streptococcus mutans GS-5 glucosyltransferase-D due to fructose removal.
    Meulenbeld GH; Zuilhof H; van Veldhuizen A; van den Heuvel RH; Hartmans S
    Appl Environ Microbiol; 1999 Sep; 65(9):4141-7. PubMed ID: 10473427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transglycosylation by Streptococcus mutans GS-5 glucosyltransferase-D: acceptor specificity and engineering of reaction conditions.
    Meulenbeld GH; Hartmans S
    Biotechnol Bioeng; 2000 Nov; 70(4):363-9. PubMed ID: 11005918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and enzymatic properties of genetically truncated forms of the water-insoluble glucan-synthesizing glucosyltransferase from Streptococcus sobrinus.
    Konishi N; Torii Y; Yamamoto T; Miyagi A; Ohta H; Fukui K; Hanamoto S; Matsuno H; Komatsu H; Kodama T; Katayama E
    J Biochem; 1999 Aug; 126(2):287-95. PubMed ID: 10423519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of Streptococcus mutans glucosyltransferase (GtfC) expressed in Escherichia coli.
    Chia JS; Hsieh CC; Yang CS; Chen JY
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1995 Nov; 28(4):242-55. PubMed ID: 9775002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of Streptococcus mutans alpha-D-glucosyltransferases released under various growth conditions.
    Walker GJ; Brown RA; Taylor C
    J Dent Res; 1984 Mar; 63(3):397-400. PubMed ID: 6230377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid.
    Sugimoto K; Nomura K; Nishiura H; Ohdan K; Ohdan K; Hayashi H; Kuriki T
    J Biosci Bioeng; 2007 Jul; 104(1):22-9. PubMed ID: 17697979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of branched dextrans in the acceptor reaction of a glucosyltransferase (GTF-I) from Streptococcus mutans OMZ176.
    Walker GJ; Schuerch C
    Carbohydr Res; 1986 Feb; 146(2):259-70. PubMed ID: 2420448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the presence of two distinct sites of sucrose hydrolysis and glucosyl transfer activities on 1,3-alpha-D-glucan synthase of Streptococcus mutans.
    Yamashita Y; Hanada N; Itoh-Andoh M; Takehara T
    FEBS Lett; 1989 Jan; 243(2):343-6. PubMed ID: 2521830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases.
    Fu DT; Robyt JF
    Carbohydr Res; 1991 Sep; 217():201-11. PubMed ID: 1839141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition- and acceptor-reaction studies of Streptococcus mutans 6715 glucosyltransferases with 3-deoxysucrose, 3-deoxy-3-fluorosucrose, and alpha-D-allopyranosyl beta-D-fructofuranoside.
    Binder TP; Robyt JF
    Carbohydr Res; 1986 Oct; 154():229-38. PubMed ID: 2947681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of salivary alpha-amylase and amylase-binding-protein A (AbpA) of Streptococcus gordonii with glucosyltransferase of S. gordonii and Streptococcus mutans.
    Chaudhuri B; Rojek J; Vickerman MM; Tanzer JM; Scannapieco FA
    BMC Microbiol; 2007 Jun; 7():60. PubMed ID: 17593303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic properties of glucosyltransferase adsorbed onto saliva-coated hydroxyapatite.
    Steinberg D; Beeman D; Bowen WH
    Artif Cells Blood Substit Immobil Biotechnol; 1996 Sep; 24(5):553-66. PubMed ID: 8879428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptococcus mutans fructosyltransferase interactions with glucans.
    Rozen R; Steinberg D; Bachrach G
    FEMS Microbiol Lett; 2004 Mar; 232(1):39-43. PubMed ID: 15019732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.
    Aerts D; Verhaeghe TF; Roman BI; Stevens CV; Desmet T; Soetaert W
    Carbohydr Res; 2011 Sep; 346(13):1860-7. PubMed ID: 21798524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300.
    Cho HK; Kim HH; Seo DH; Jung JH; Park JH; Baek NI; Kim MJ; Yoo SH; Cha J; Kim YR; Park CS
    Enzyme Microb Technol; 2011 Jul; 49(2):246-53. PubMed ID: 22112416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases-I from Streptococcus mutans UA159.
    Yu J; Yan F; Lu Q; Liu R
    Food Res Int; 2018 Oct; 112():152-159. PubMed ID: 30131122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of three glycosyltransferases to sucrose-dependent adherence of Streptococcus mutans.
    Ooshima T; Matsumura M; Hoshino T; Kawabata S; Sobue S; Fujiwara T
    J Dent Res; 2001 Jul; 80(7):1672-7. PubMed ID: 11597030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases.
    Kato C; Nakano Y; Lis M; Kuramitsu HK
    Biochem Biophys Res Commun; 1992 Dec; 189(2):1184-8. PubMed ID: 1472027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucosylation of acetic acid by sucrose phosphorylase.
    Nomura K; Sugimoto K; Nishiura H; Ohdan K; Nishimura T; Hayashi H; Kuriki T
    Biosci Biotechnol Biochem; 2008 Jan; 72(1):82-7. PubMed ID: 18175927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of structural isomers of sucrose in the reaction between sucrose and glucosyltransferases from mutans streptococci.
    Minami T; Fujiwara T; Ooshima T; Nakajima Y; Hamada S
    Oral Microbiol Immunol; 1990 Aug; 5(4):189-94. PubMed ID: 2150553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.