These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 10473436)
1. Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Porro D; Bianchi MM; Brambilla L; Menghini R; Bolzani D; Carrera V; Lievense J; Liu CL; Ranzi BM; Frontali L; Alberghina L Appl Environ Microbiol; 1999 Sep; 65(9):4211-5. PubMed ID: 10473436 [TBL] [Abstract][Full Text] [Related]
2. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Bianchi MM; Brambilla L; Protani F; Liu CL; Lievense J; Porro D Appl Environ Microbiol; 2001 Dec; 67(12):5621-5. PubMed ID: 11722915 [TBL] [Abstract][Full Text] [Related]
3. Genome engineering of Kluyveromyces marxianus for high D-( -)-lactic acid production under low pH conditions. Gosalawit C; Khunnonkwao P; Jantama K Appl Microbiol Biotechnol; 2023 Aug; 107(16):5095-5105. PubMed ID: 37405435 [TBL] [Abstract][Full Text] [Related]
4. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Ilmén M; Koivuranta K; Ruohonen L; Rajgarhia V; Suominen P; Penttilä M Microb Cell Fact; 2013 May; 12():53. PubMed ID: 23706009 [TBL] [Abstract][Full Text] [Related]
5. Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Osawa F; Fujii T; Nishida T; Tada N; Ohnishi T; Kobayashi O; Komeda T; Yoshida S Yeast; 2009 Sep; 26(9):485-96. PubMed ID: 19655300 [TBL] [Abstract][Full Text] [Related]
6. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
7. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Ishida N; Saitoh S; Tokuhiro K; Nagamori E; Matsuyama T; Kitamoto K; Takahashi H Appl Environ Microbiol; 2005 Apr; 71(4):1964-70. PubMed ID: 15812027 [TBL] [Abstract][Full Text] [Related]
8. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H Appl Biochem Biotechnol; 2006 Mar; 131(1-3):795-807. PubMed ID: 18563655 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Ishida N; Saitoh S; Ohnishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H Appl Biochem Biotechnol; 2006; 129-132():795-807. PubMed ID: 16915689 [TBL] [Abstract][Full Text] [Related]
11. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production]. Zhao L; Wang J; Zhou J; Liu L; Du G; Chen J Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):50-8. PubMed ID: 21465789 [TBL] [Abstract][Full Text] [Related]
12. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. Lee JW; In JH; Park JB; Shin J; Park JH; Sung BH; Sohn JH; Seo JH; Park JB; Kim SR; Kweon DH J Biotechnol; 2017 Jan; 241():81-86. PubMed ID: 27867078 [TBL] [Abstract][Full Text] [Related]
14. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Novy V; Brunner B; Nidetzky B Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896 [TBL] [Abstract][Full Text] [Related]
15. Rewiring Lactococcus lactis for ethanol production. Solem C; Dehli T; Jensen PR Appl Environ Microbiol; 2013 Apr; 79(8):2512-8. PubMed ID: 23377945 [TBL] [Abstract][Full Text] [Related]
16. Production of glucoamylase in pyruvate decarboxylase deletion mutants of the yeast Kluyveromyces lactis. Salani F; Bianchi MM Appl Microbiol Biotechnol; 2006 Jan; 69(5):564-72. PubMed ID: 16175368 [TBL] [Abstract][Full Text] [Related]
17. Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid. Ikushima S; Fujii T; Kobayashi O; Yoshida S; Yoshida A Biosci Biotechnol Biochem; 2009 Aug; 73(8):1818-24. PubMed ID: 19661682 [TBL] [Abstract][Full Text] [Related]
18. Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis. Nichols NN; Dien BS; Bothast RJ J Ind Microbiol Biotechnol; 2003 May; 30(5):315-21. PubMed ID: 12750944 [TBL] [Abstract][Full Text] [Related]
19. Direct fermentation of Jerusalem artichoke tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus. Bae JH; Kim HJ; Kim MJ; Sung BH; Jeon JH; Kim HS; Jin YS; Kweon DH; Sohn JH J Biotechnol; 2018 Jan; 266():27-33. PubMed ID: 29208409 [TBL] [Abstract][Full Text] [Related]
20. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Ishida N; Saitoh S; Onishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H Biosci Biotechnol Biochem; 2006 May; 70(5):1148-53. PubMed ID: 16717415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]