BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10473539)

  • 1. Abasic sites induce triplet-repeat expansion during DNA replication in vitro.
    Lyons-Darden T; Topal MD
    J Biol Chem; 1999 Sep; 274(37):25975-8. PubMed ID: 10473539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease.
    Petruska J; Hartenstine MJ; Goodman MF
    J Biol Chem; 1998 Feb; 273(9):5204-10. PubMed ID: 9478975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication.
    Iyer RR; Wells RD
    J Biol Chem; 1999 Feb; 274(6):3865-77. PubMed ID: 9920942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of DNA strand slippage synthesis by a bulge binding synthetic agent.
    Kappen LS; Xi Z; Jones GB; Goldberg IH
    Biochemistry; 2003 Feb; 42(7):2166-73. PubMed ID: 12590606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature, Mg2+ concentration and mismatches on triplet-repeat expansion during DNA replication in vitro.
    Lyons-Darden T; Topal MD
    Nucleic Acids Res; 1999 Jun; 27(11):2235-40. PubMed ID: 10325409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes.
    Ohshima K; Wells RD
    J Biol Chem; 1997 Jul; 272(27):16798-806. PubMed ID: 9201985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak strand displacement activity enables human DNA polymerase beta to expand CAG/CTG triplet repeats at strand breaks.
    Hartenstine MJ; Goodman MF; Petruska J
    J Biol Chem; 2002 Nov; 277(44):41379-89. PubMed ID: 12196536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Assays to Detect Interruptions in CTG.CAG Repeat Expansions.
    Tomé S; Gourdon G
    Methods Mol Biol; 2020; 2056():11-23. PubMed ID: 31586339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci.
    Parsons MA; Sinden RR; Izban MG
    J Biol Chem; 1998 Oct; 273(41):26998-7008. PubMed ID: 9756950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hairpin formation in Friedreich's ataxia triplet repeat expansion.
    Heidenfelder BL; Makhov AM; Topal MD
    J Biol Chem; 2003 Jan; 278(4):2425-31. PubMed ID: 12441336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mismatched nucleotides may facilitate expansion of trinucleotide repeats in genetic diseases.
    Nakayabu M; Miwa S; Suzuki M; Izuta S; Sobue G; Yoshida S
    Nucleic Acids Res; 1998 Apr; 26(8):1980-4. PubMed ID: 9518492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTG triplet repeats from the myotonic dystrophy gene are expanded in Escherichia coli distal to the replication origin as a single large event.
    Kang S; Ohshima K; Jaworski A; Wells RD
    J Mol Biol; 1996 May; 258(4):543-7. PubMed ID: 8636989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene conversion (recombination) mediates expansions of CTG[middle dot]CAG repeats.
    Jakupciak JP; Wells RD
    J Biol Chem; 2000 Dec; 275(51):40003-13. PubMed ID: 11005819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA double-strand breaks induce deletion of CTG.CAG repeats in an orientation-dependent manner in Escherichia coli.
    Hebert ML; Spitz LA; Wells RD
    J Mol Biol; 2004 Feb; 336(3):655-72. PubMed ID: 15095979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of CAG repeats in Escherichia coli is controlled by single-strand DNA exonucleases of both polarities.
    Jackson A; Okely EA; Leach DR
    Genetics; 2014 Oct; 198(2):509-17. PubMed ID: 25081568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae.
    Williams GM; Petrides AK; Balakrishnan L; Surtees JA
    Methods Mol Biol; 2020; 2056():25-68. PubMed ID: 31586340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translesional synthesis on DNA templates containing a single abasic site. A mechanistic study of the "A rule".
    Shibutani S; Takeshita M; Grollman AP
    J Biol Chem; 1997 May; 272(21):13916-22. PubMed ID: 9153253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro expansion of mammalian telomere repeats by DNA polymerase alpha-primase.
    Nozawa K; Suzuki M; Takemura M; Yoshida S
    Nucleic Acids Res; 2000 Aug; 28(16):3117-24. PubMed ID: 10931927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.