These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10473847)

  • 1. Passive bipedal walking with phasic muscle contraction.
    van der Linde RQ
    Biol Cybern; 1999 Sep; 81(3):227-37. PubMed ID: 10473847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leg stiffness increases with speed to modulate gait frequency and propulsion energy.
    Kim S; Park S
    J Biomech; 2011 Apr; 44(7):1253-8. PubMed ID: 21396646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torque-stiffness-controlled dynamic walking with central pattern generators.
    Huang Y; Vanderborght B; Van Ham R; Wang Q
    Biol Cybern; 2014 Dec; 108(6):803-23. PubMed ID: 25128320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model.
    Kurz MJ; Stergiou N
    Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model.
    Yamazaki N; Hase K; Ogihara N; Hayamizu N
    Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle force redistributes segmental power for body progression during walking.
    Neptune RR; Zajac FE; Kautz SA
    Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man.
    Sinkjaer T
    Acta Neurol Scand Suppl; 1997; 170():1-28. PubMed ID: 9406617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forward dynamic simulation of bipedal walking in the Japanese macaque: investigation of causal relationships among limb kinematics, speed, and energetics of bipedal locomotion in a nonhuman primate.
    Ogihara N; Aoi S; Sugimoto Y; Tsuchiya K; Nakatsukasa M
    Am J Phys Anthropol; 2011 Aug; 145(4):568-80. PubMed ID: 21590751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control.
    Verdaasdonk BW; Koopman HF; van der Helm FC
    Biol Cybern; 2009 Jul; 101(1):49-61. PubMed ID: 19504121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Computer modeling and simulation of bipedal walking in the Japanese macaque].
    Ogihara N
    Brain Nerve; 2010 Nov; 62(11):1183-92. PubMed ID: 21068455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O; Pearson K
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model.
    Li W; Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2017 Oct; 12(6):065002. PubMed ID: 28748830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipedal walking and running with spring-like biarticular muscles.
    Iida F; Rummel J; Seyfarth A
    J Biomech; 2008; 41(3):656-67. PubMed ID: 17996242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifurcation and stability analysis in musculoskeletal systems: a study in human stance.
    Verdaasdonk BW; Koopman HF; van Gils SA; van der Helm FC
    Biol Cybern; 2004 Jul; 91(1):48-62. PubMed ID: 15316784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.