These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 10473901)
1. Behavioral, morphological and physiological correlates of diurnal and nocturnal vision in selected wading bird species. Rojas LM; McNeil R; Cabana T; Lachapelle P Brain Behav Evol; 1999; 53(5-6):227-42. PubMed ID: 10473901 [TBL] [Abstract][Full Text] [Related]
2. Diurnal and nocturnal visual capabilities in shorebirds as a function of their feeding strategies. Rojas LM; McNeil R; Cabana T; Lachapelle P Brain Behav Evol; 1999; 53(1):29-43. PubMed ID: 9858803 [TBL] [Abstract][Full Text] [Related]
3. Retinal morphology and electrophysiology of two caprimulgiformes birds: the cave-living and nocturnal oilbird (Steatornis caripensis), and the crepuscularly and nocturnally foraging common pauraque (Nyctidromus albicollis). Rojas LM; Ramírez Y; McNeil R; Mitchell M; Marín G Brain Behav Evol; 2004; 64(1):19-33. PubMed ID: 15051964 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the retinal structure and function in four bird species as a function of the time they start singing in the morning. McNeil R; McSween A; Lachapelle P Brain Behav Evol; 2005; 65(3):202-14. PubMed ID: 15703474 [TBL] [Abstract][Full Text] [Related]
5. The topography of rods, cones and intrinsically photosensitive retinal ganglion cells in the retinas of a nocturnal (Micaelamys namaquensis) and a diurnal (Rhabdomys pumilio) rodent. van der Merwe I; Lukáts Á; Bláhová V; Oosthuizen MK; Bennett NC; Němec P PLoS One; 2018; 13(8):e0202106. PubMed ID: 30092025 [TBL] [Abstract][Full Text] [Related]
6. Genomic insight into the nocturnal adaptation of the black-crowned night heron (Nycticorax nycticorax). Luo H; Luo S; Fang W; Lin Q; Chen X; Zhou X BMC Genomics; 2022 Oct; 23(1):683. PubMed ID: 36192687 [TBL] [Abstract][Full Text] [Related]
7. Waterbirds (other than Laridae) nesting in the middle section of Laguna Cuyutlán, Colima, México. Mellink E; Riojas-López ME Rev Biol Trop; 2008 Mar; 56(1):391-7. PubMed ID: 18624252 [TBL] [Abstract][Full Text] [Related]
8. Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions. Litherland L; Collin SP Vis Neurosci; 2008; 25(4):549-61. PubMed ID: 18606042 [TBL] [Abstract][Full Text] [Related]
9. Comparing the retinal structures and functions in two species of gulls (Larus delawarensis and Larus modestus) with significant nocturnal behaviours. Emond MP; McNeil R; Cabana T; Guerra CG; Lachapelle P Vision Res; 2006 Sep; 46(18):2914-25. PubMed ID: 16647740 [TBL] [Abstract][Full Text] [Related]
11. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. Allen AE J Neurosci; 2022 Nov; 42(47):8795-8806. PubMed ID: 36216501 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Schott RK; Müller J; Yang CG; Bhattacharyya N; Chan N; Xu M; Morrow JM; Ghenu AH; Loew ER; Tropepe V; Chang BS Proc Natl Acad Sci U S A; 2016 Jan; 113(2):356-61. PubMed ID: 26715746 [TBL] [Abstract][Full Text] [Related]
13. Cattle egrets are less able to cope with light refraction than are other herons. Katzir G; Strod T; Schechtman E; Hareli S; Arad Z Anim Behav; 1999 Mar; 57(3):687-694. PubMed ID: 10196060 [TBL] [Abstract][Full Text] [Related]
14. Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes). Salazar JE; Severin D; Vega-Zuniga T; Fernández-Aburto P; Deichler A; Sallaberry A M; Mpodozis J Brain Behav Evol; 2019; 94(1-4):27-36. PubMed ID: 31751995 [TBL] [Abstract][Full Text] [Related]
15. Diurnal variation in the b-wave implicit time of the human electroretinogram. Hankins MW; Jones RJ; Ruddock KH Vis Neurosci; 1998; 15(1):55-67. PubMed ID: 9456505 [TBL] [Abstract][Full Text] [Related]
16. Circadian rhythms of rod-cone dominance in the Japanese quail retina. Manglapus MK; Uchiyama H; Buelow NF; Barlow RB J Neurosci; 1998 Jun; 18(12):4775-84. PubMed ID: 9614251 [TBL] [Abstract][Full Text] [Related]
17. Patterns of resource partitioning by nesting herons and ibis: how are odonata exploited? Samraoui F; Nedjah R; Boucheker A; Alfarhan AH; Samraoui B C R Biol; 2012 Apr; 335(4):310-7. PubMed ID: 22578577 [TBL] [Abstract][Full Text] [Related]
18. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). Bailes HJ; Robinson SR; Trezise AE; Collin SP J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal and selenium levels in feathers of young egrets and herons from Hong Kong and Szechuan, China. Burger J; Gochfeld M Arch Environ Contam Toxicol; 1993 Sep; 25(3):322-7. PubMed ID: 8215588 [TBL] [Abstract][Full Text] [Related]
20. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Hauzman E Semin Cell Dev Biol; 2020 Oct; 106():86-93. PubMed ID: 32359892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]