These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10475490)

  • 1. Development of the Nimbus/University of Pittsburgh innovative ventricular assist system.
    Butler KC; Dow JJ; Litwak P; Kormos RL; Borovetz HS
    Ann Thorac Surg; 1999 Aug; 68(2):790-4. PubMed ID: 10475490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the Nimbus/Pittsburgh axial flow left ventricular assist system.
    Butler K; Thomas D; Antaki J; Borovetz H; Griffith B; Kameneva M; Kormos R; Litwak P
    Artif Organs; 1997 Jul; 21(7):602-10. PubMed ID: 9212925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continued development of the Nimbus/University of Pittsburgh (UOP) axial flow left ventricular assist system.
    Thomas DC; Butler KC; Taylor LP; Le Blanc P; Griffith BP; Kormos RL; Borovetz HS; Litwak P; Kameneva MV; Choi S; Burgreen GW; Wagner WR; Wu Z; Antaki JF
    ASAIO J; 1997; 43(5):M564-6. PubMed ID: 9360107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HeartMate II left ventricular assist system: from concept to first clinical use.
    Griffith BP; Kormos RL; Borovetz HS; Litwak K; Antaki JF; Poirier VL; Butler KC
    Ann Thorac Surg; 2001 Mar; 71(3 Suppl):S116-20; discussion S114-6. PubMed ID: 11265845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress on development of the Nimbus-University of Pittsburgh axial flow left ventricular assist system.
    Thomas DC; Butler KC; Taylor LP; Le Blanc P; Rintoul TC; Petersen TV; Griffith BP; Kormos RL; Borovetz HS; Litwak P; Kameneva MV; Choi S; Burgreen GW; Wu Z; Antaki JF
    ASAIO J; 1998; 44(5):M521-4. PubMed ID: 9804485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA; Salamonsen RF; Savkin AV; AlOmari AH; Lim E; Lovell NH
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics as a development tool for rotary blood pumps.
    Burgreen GW; Antaki JF; Wu ZJ; Holmes AJ
    Artif Organs; 2001 May; 25(5):336-40. PubMed ID: 11403661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an axial flow blood pump LVAS.
    Butler KC; Maher TR; Borovetz HS; Kormos RL; Antaki JF; Kameneva M; Griffith BP; Zerbe T; Schaffer FD
    ASAIO J; 1992; 38(3):M296-300. PubMed ID: 1457869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PediaFlow pediatric ventricular assist device.
    Wearden PD; Morell VO; Keller BB; Webber SA; Borovetz HS; Badylak SF; Boston JR; Kormos RL; Kameneva MV; Simaan M; Snyder TA; Tsukui H; Wagner WR; Antaki JF; Diao C; Vandenberghe S; Gardiner J; Li CM; Noh D; Paden D; Paden B; Wu J; Bearnson GB; Jacobs G; Kirk J; Khanwilkar P; Long JW; Miles S; Hawkins JA; Kouretas PC; Shaddy RE
    Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu; 2006; ():92-8. PubMed ID: 16638553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid dynamics aspects of miniaturized axial-flow blood pump.
    Kang C; Huang Q; Li Y
    Biomed Mater Eng; 2014; 24(1):723-9. PubMed ID: 24211957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer modeling of interactions of an electric motor, circulatory system, and rotary blood pump.
    Xu L; Fu M
    ASAIO J; 2000; 46(5):604-11. PubMed ID: 11016517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.