These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10476852)
1. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. Bursać PM; Obitz TW; Eisenberg SR; Stamenović D J Biomech; 1999 Oct; 32(10):1125-30. PubMed ID: 10476852 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Hirvonen J; Helminen HJ; Jurvelin JS J Biomech; 2002 Jul; 35(7):903-9. PubMed ID: 12052392 [TBL] [Abstract][Full Text] [Related]
3. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. Cohen B; Lai WM; Mow VC J Biomech Eng; 1998 Aug; 120(4):491-6. PubMed ID: 10412420 [TBL] [Abstract][Full Text] [Related]
4. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200 [TBL] [Abstract][Full Text] [Related]
5. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. Wong M; Ponticiello M; Kovanen V; Jurvelin JS J Biomech; 2000 Sep; 33(9):1049-54. PubMed ID: 10854876 [TBL] [Abstract][Full Text] [Related]
6. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. DiSilvestro MR; Suh JK J Biomech; 2001 Apr; 34(4):519-25. PubMed ID: 11266676 [TBL] [Abstract][Full Text] [Related]
7. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue. Hatami-Marbini H; Maulik R J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630 [TBL] [Abstract][Full Text] [Related]
8. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124 [TBL] [Abstract][Full Text] [Related]
9. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model. Chegini S; Ferguson SJ J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445 [TBL] [Abstract][Full Text] [Related]
10. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I--Simultaneous prediction of reaction force and lateral displacement. DiSilvestro MR; Zhu Q; Wong M; Jurvelin JS; Suh JK J Biomech Eng; 2001 Apr; 123(2):191-7. PubMed ID: 11340881 [TBL] [Abstract][Full Text] [Related]
11. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. Fortin M; Soulhat J; Shirazi-Adl A; Hunziker EB; Buschmann MD J Biomech Eng; 2000 Apr; 122(2):189-95. PubMed ID: 10834160 [TBL] [Abstract][Full Text] [Related]
12. Optical and mechanical determination of Poisson's ratio of adult bovine humeral articular cartilage. Jurvelin JS; Buschmann MD; Hunziker EB J Biomech; 1997 Mar; 30(3):235-41. PubMed ID: 9119822 [TBL] [Abstract][Full Text] [Related]
13. A comparison of cartilage stress-relaxation models in unconfined compression: QLV and stretched exponential in combination with fluid flow. June RK; Fyhrie DP Comput Methods Biomech Biomed Engin; 2013; 16(5):565-76. PubMed ID: 22149471 [TBL] [Abstract][Full Text] [Related]
14. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates. DiSilvestro MR; Zhu Q; Suh JK J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882 [TBL] [Abstract][Full Text] [Related]
15. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response. Park S; Ateshian GA J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454 [TBL] [Abstract][Full Text] [Related]
16. Determination of Poisson's ratio of articular cartilage by indentation using different-sized indenters. Jin H; Lewis JL J Biomech Eng; 2004 Apr; 126(2):138-45. PubMed ID: 15179843 [TBL] [Abstract][Full Text] [Related]
17. A Conewise Linear Elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. Soltz MA; Ateshian GA J Biomech Eng; 2000 Dec; 122(6):576-86. PubMed ID: 11192377 [TBL] [Abstract][Full Text] [Related]
18. An analysis of the unconfined compression of articular cartilage. Armstrong CG; Lai WM; Mow VC J Biomech Eng; 1984 May; 106(2):165-73. PubMed ID: 6738022 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. Sergerie K; Lacoursière MO; Lévesque M; Villemure I J Biomech; 2009 Mar; 42(4):510-6. PubMed ID: 19185303 [TBL] [Abstract][Full Text] [Related]
20. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model. Garcia JJ; Altiero NJ; Haut RC J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]