These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats. Boulamery-Velly A; Simon N; Vidal J; Mouchet J; Bruguerolle B Chronobiol Int; 2005; 22(3):489-98. PubMed ID: 16076649 [TBL] [Abstract][Full Text] [Related]
8. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice. Holmes MM; Mistlberger RE Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895 [TBL] [Abstract][Full Text] [Related]
9. Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light-dark cycle. Kalsbeek A; Barassin S; van Heerikhuize JJ; van der Vliet J; Buijs RM J Biol Rhythms; 2000 Feb; 15(1):57-66. PubMed ID: 10677017 [TBL] [Abstract][Full Text] [Related]
10. Effects of aging on food-entrained circadian rhythms in the rat. Mistlberger RE; Houpt TA; Moore-Ede MC Neurobiol Aging; 1990; 11(6):619-24. PubMed ID: 2280805 [TBL] [Abstract][Full Text] [Related]
11. Vasopressin deficiency and circadian rhythms during food-restriction stress. Murphy HM; Wideman CH; Nadzam GR Peptides; 1993; 14(6):1215-20. PubMed ID: 8134303 [TBL] [Abstract][Full Text] [Related]
12. Effects of food deprivation on locomotor activity, plasma glucose, and circadian clock resetting in Syrian hamsters. Mistlberger RE; Webb IC; Simon MM; Tse D; Su C J Biol Rhythms; 2006 Feb; 21(1):33-44. PubMed ID: 16461983 [TBL] [Abstract][Full Text] [Related]
13. Little or no induction of hyperglycemia by 2-deoxy-D-glucose in hereditary blind microphthalmic rats. Nagai K; Sekitani M; Otani K; Nakagawa H Life Sci; 1988; 43(20):1575-82. PubMed ID: 3057302 [TBL] [Abstract][Full Text] [Related]
14. Diurnal fluctuation in the enzyme activity and the messenger RNA level of pineal serotonin N-acetyltransferase in normal and hereditary microphthalmic rats. Shim S; Fu Z; Kato H; Tanaka H Biosci Biotechnol Biochem; 1997 Dec; 61(12):2113-5. PubMed ID: 9438991 [TBL] [Abstract][Full Text] [Related]
15. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa. Ellis DJ; Firth BT; Belan I Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837 [TBL] [Abstract][Full Text] [Related]
16. Forced dissociation of food- and light- entrainable circadian rhythms of rats in a skeleton photoperiod. Brinkhof MW; Daan S; Strubbe JH Physiol Behav; 1998 Nov; 65(2):225-31. PubMed ID: 9855470 [TBL] [Abstract][Full Text] [Related]
17. Circadian rhythms of small carnivores and the effect of restricted feeding on daily activity. Zielinski WJ Physiol Behav; 1986; 38(5):613-20. PubMed ID: 3823174 [TBL] [Abstract][Full Text] [Related]
18. Circadian rhythms of locomotor activity in the subterranean Mashona mole rat, Cryptomys darlingi. Vasicek CA; Oosthuizen MK; Cooper HM; Bennett NC Physiol Behav; 2005 Feb; 84(2):181-91. PubMed ID: 15708770 [TBL] [Abstract][Full Text] [Related]
19. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice. Castillo C; Molyneux P; Carlson R; Harrington ME Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557 [TBL] [Abstract][Full Text] [Related]
20. Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata). López-Olmeda JF; Montoya A; Oliveira C; Sánchez-Vázquez FJ Chronobiol Int; 2009 Oct; 26(7):1389-408. PubMed ID: 19916838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]