These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10477046)

  • 1. Effects of restricted food access on diurnal fluctuation of behaviors and biochemical functions in hereditary microphthalmic rats.
    Tanaka H; Shim S; Hitomi Y; Sugita S; Sugahara K
    Physiol Behav; 1999 Aug; 67(2):167-72. PubMed ID: 10477046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of restricted food access on circadian fluctuation of serotonin N-acetyltransferase activities in hereditary microphthalmic rats.
    Shim S; Tanaka H
    Physiol Behav; 2000 Dec; 71(5):477-83. PubMed ID: 11239665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological changes in the hypothalamic suprachiasmatic nucleus and circadian rhythm of locomotor activity in hereditary microphthalmic rats.
    Sugita S; Minematsu M; Nagai K; Sugahara K
    Exp Anim; 1996 Apr; 45(2):115-24. PubMed ID: 8726135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding rhythm and ornithine decarboxylase activity in hereditary microphthalmic rats.
    Shim S; Sugita S; Sugahara K; Tanaka H
    Physiol Behav; 1997 Dec; 62(6):1365-9. PubMed ID: 9383126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic consequences of timed feeding in mice.
    Shamsi NA; Salkeld MD; Rattanatray L; Voultsios A; Varcoe TJ; Boden MJ; Kennaway DJ
    Physiol Behav; 2014 Apr; 128():188-201. PubMed ID: 24534172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats.
    Boulamery-Velly A; Simon N; Vidal J; Mouchet J; Bruguerolle B
    Chronobiol Int; 2005; 22(3):489-98. PubMed ID: 16076649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice.
    Holmes MM; Mistlberger RE
    Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light-dark cycle.
    Kalsbeek A; Barassin S; van Heerikhuize JJ; van der Vliet J; Buijs RM
    J Biol Rhythms; 2000 Feb; 15(1):57-66. PubMed ID: 10677017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aging on food-entrained circadian rhythms in the rat.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Neurobiol Aging; 1990; 11(6):619-24. PubMed ID: 2280805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasopressin deficiency and circadian rhythms during food-restriction stress.
    Murphy HM; Wideman CH; Nadzam GR
    Peptides; 1993; 14(6):1215-20. PubMed ID: 8134303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of food deprivation on locomotor activity, plasma glucose, and circadian clock resetting in Syrian hamsters.
    Mistlberger RE; Webb IC; Simon MM; Tse D; Su C
    J Biol Rhythms; 2006 Feb; 21(1):33-44. PubMed ID: 16461983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Little or no induction of hyperglycemia by 2-deoxy-D-glucose in hereditary blind microphthalmic rats.
    Nagai K; Sekitani M; Otani K; Nakagawa H
    Life Sci; 1988; 43(20):1575-82. PubMed ID: 3057302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diurnal fluctuation in the enzyme activity and the messenger RNA level of pineal serotonin N-acetyltransferase in normal and hereditary microphthalmic rats.
    Shim S; Fu Z; Kato H; Tanaka H
    Biosci Biotechnol Biochem; 1997 Dec; 61(12):2113-5. PubMed ID: 9438991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced dissociation of food- and light- entrainable circadian rhythms of rats in a skeleton photoperiod.
    Brinkhof MW; Daan S; Strubbe JH
    Physiol Behav; 1998 Nov; 65(2):225-31. PubMed ID: 9855470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms of small carnivores and the effect of restricted feeding on daily activity.
    Zielinski WJ
    Physiol Behav; 1986; 38(5):613-20. PubMed ID: 3823174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms of locomotor activity in the subterranean Mashona mole rat, Cryptomys darlingi.
    Vasicek CA; Oosthuizen MK; Cooper HM; Bennett NC
    Physiol Behav; 2005 Feb; 84(2):181-91. PubMed ID: 15708770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata).
    López-Olmeda JF; Montoya A; Oliveira C; Sánchez-Vázquez FJ
    Chronobiol Int; 2009 Oct; 26(7):1389-408. PubMed ID: 19916838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.