These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 10477284)
1. Editing of non-cognate aminoacyl adenylates by peptide synthetases. Pavela-Vrancic M; Dieckmann R; Döhren HV; Kleinkauf H Biochem J; 1999 Sep; 342 Pt 3(Pt 3):715-9. PubMed ID: 10477284 [TBL] [Abstract][Full Text] [Related]
2. Relationship between activating and editing functions of the adenylation domain of apo-tyrocidin synthetase 1 (apo-TY1). Bucević-Popović V; Pavela-Vrancic M; Dieckmann R; Von Döhren H Biochimie; 2006; 88(3-4):265-70. PubMed ID: 16182433 [TBL] [Abstract][Full Text] [Related]
3. ATPase activity of non-ribosomal peptide synthetases. Pavela-Vrancic M; Dieckmann R; von Döhren H Biochim Biophys Acta; 2004 Jan; 1696(1):83-91. PubMed ID: 14726208 [TBL] [Abstract][Full Text] [Related]
4. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. Dieckmann R; Lee YO; van Liempt H; von Döhren H; Kleinkauf H FEBS Lett; 1995 Jan; 357(2):212-6. PubMed ID: 7805893 [TBL] [Abstract][Full Text] [Related]
5. Dipeptide synthesis by an isolated adenylate-forming domain of non-ribosomal peptide synthetases (NRPS). Dieckmann R; Neuhof T; Pavela-Vrancic M; von Döhren H FEBS Lett; 2001 Jun; 498(1):42-5. PubMed ID: 11389895 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of (di)adenosine polyphosphates by non-ribosomal peptide synthetases (NRPS). Dieckmann R; Pavela-Vrancic M; von Döhren H Biochim Biophys Acta; 2001 Mar; 1546(1):234-41. PubMed ID: 11257526 [TBL] [Abstract][Full Text] [Related]
7. Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase. Luo L; Burkart MD; Stachelhaus T; Walsh CT J Am Chem Soc; 2001 Nov; 123(45):11208-18. PubMed ID: 11697963 [TBL] [Abstract][Full Text] [Related]
8. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. Gruic-Sovulj I; Rokov-Plavec J; Weygand-Durasevic I FEBS Lett; 2007 Oct; 581(26):5110-4. PubMed ID: 17931630 [TBL] [Abstract][Full Text] [Related]
9. Active site titration of gramicidin S synthetase 2: evidence for misactivation and editing in non-ribosomal peptide biosynthesis. Kittelberger R; Pavela-Vrancic M; von Döhren H FEBS Lett; 1999 Nov; 461(3):145-8. PubMed ID: 10567686 [TBL] [Abstract][Full Text] [Related]
10. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases. Hara R; Suzuki R; Kino K Anal Biochem; 2015 May; 477():89-91. PubMed ID: 25615416 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric Detection of the Adenylation Activity in Nonribosomal Peptide Synthetases. Maruyama C; Niikura H; Takakuwa M; Katano H; Hamano Y Methods Mol Biol; 2016; 1401():77-84. PubMed ID: 26831702 [TBL] [Abstract][Full Text] [Related]
12. Production of aminoacyl prolines using the adenylation domain of nonribosomal peptide synthetase with class III polyphosphate kinase 2-mediated ATP regeneration. Suzuki S; Hara R; Kino K J Biosci Bioeng; 2018 Jun; 125(6):644-648. PubMed ID: 29366718 [TBL] [Abstract][Full Text] [Related]
13. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Schwarzer D; Mootz HD; Linne U; Marahiel MA Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14083-8. PubMed ID: 12384573 [TBL] [Abstract][Full Text] [Related]
14. Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis. Pfeifer E; Pavela-Vrancic M; von Döhren H; Kleinkauf H Biochemistry; 1995 Jun; 34(22):7450-9. PubMed ID: 7779788 [TBL] [Abstract][Full Text] [Related]
15. Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1. Dieckmann R; Pavela-Vrancic M; von Döhren H; Kleinkauf H J Mol Biol; 1999 Apr; 288(1):129-40. PubMed ID: 10329131 [TBL] [Abstract][Full Text] [Related]
16. Prokaryotic and eukaryotic tetrameric phenylalanyl-tRNA synthetases display conservation of the binding mode of the tRNA(Phe) CCA end. Moor N; Lavrik O; Favre A; Safro M Biochemistry; 2003 Sep; 42(36):10697-708. PubMed ID: 12962494 [TBL] [Abstract][Full Text] [Related]
17. Substrate specificity of the amino acyl adenylate activation sites of gramicidin S-synthetase (GSS). Vater J; Kleinkauf H Acta Microbiol Acad Sci Hung; 1975; 22(4):419-25. PubMed ID: 58543 [TBL] [Abstract][Full Text] [Related]
18. Proofreading of noncognate acyl adenylates by an acyl-coenzyme a ligase. Manandhar M; Cronan JE Chem Biol; 2013 Dec; 20(12):1441-6. PubMed ID: 24269150 [TBL] [Abstract][Full Text] [Related]
19. Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Clugston SL; Sieber SA; Marahiel MA; Walsh CT Biochemistry; 2003 Oct; 42(41):12095-104. PubMed ID: 14556641 [TBL] [Abstract][Full Text] [Related]
20. Methionyl-tRNA synthetase needs an intact and mobile 332KMSKS336 motif in catalysis of methionyl adenylate formation. Schmitt E; Meinnel T; Blanquet S; Mechulam Y J Mol Biol; 1994 Sep; 242(4):566-76. PubMed ID: 7932711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]