BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10477523)

  • 1. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50.
    Kleiman FE; Manley JL
    Science; 1999 Sep; 285(5433):1576-9. PubMed ID: 10477523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The BARD1-CstF-50 interaction links mRNA 3' end formation to DNA damage and tumor suppression.
    Kleiman FE; Manley JL
    Cell; 2001 Mar; 104(5):743-53. PubMed ID: 11257228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mRNA Processing Factor CstF-50 and Ubiquitin Escort Factor p97 Are BRCA1/BARD1 Cofactors Involved in Chromatin Remodeling during the DNA Damage Response.
    Fonseca D; Baquero J; Murphy MR; Aruggoda G; Varriano S; Sapienza C; Mashadova O; Rahman S; Kleiman FE
    Mol Cell Biol; 2018 Feb; 38(4):. PubMed ID: 29180510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 3' processing factor CstF functions in the DNA repair response.
    Mirkin N; Fonseca D; Mohammed S; Cevher MA; Manley JL; Kleiman FE
    Nucleic Acids Res; 2008 Apr; 36(6):1792-804. PubMed ID: 18252771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated levels of the polyadenylation factor CstF 64 enhance formation of the 1kB Testis brain RNA-binding protein (TB-RBP) mRNA in male germ cells.
    Chennathukuzhi VM; Lefrancois S; Morales CR; Syed V; Hecht NB
    Mol Reprod Dev; 2001 Apr; 58(4):460-9. PubMed ID: 11241784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear deadenylation/polyadenylation factors regulate 3' processing in response to DNA damage.
    Cevher MA; Zhang X; Fernandez S; Kim S; Baquero J; Nilsson P; Lee S; Virtanen A; Kleiman FE
    EMBO J; 2010 May; 29(10):1674-87. PubMed ID: 20379136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRCA1/BARD1 inhibition of mRNA 3' processing involves targeted degradation of RNA polymerase II.
    Kleiman FE; Wu-Baer F; Fonseca D; Kaneko S; Baer R; Manley JL
    Genes Dev; 2005 May; 19(10):1227-37. PubMed ID: 15905410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50.
    Edwards RA; Lee MS; Tsutakawa SE; Williams RS; Nazeer I; Kleiman FE; Tainer JA; Glover JN
    Biochemistry; 2008 Nov; 47(44):11446-56. PubMed ID: 18842000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA recognition by the human polyadenylation factor CstF.
    Takagaki Y; Manley JL
    Mol Cell Biol; 1997 Jul; 17(7):3907-14. PubMed ID: 9199325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation.
    Weng KF; Li ML; Hung CT; Shih SR
    PLoS Pathog; 2009 Sep; 5(9):e1000593. PubMed ID: 19779565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location.
    MacDonald CC; Wilusz J; Shenk T
    Mol Cell Biol; 1994 Oct; 14(10):6647-54. PubMed ID: 7935383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription.
    McCracken S; Fong N; Yankulov K; Ballantyne S; Pan G; Greenblatt J; Patterson SD; Wickens M; Bentley DL
    Nature; 1997 Jan; 385(6614):357-61. PubMed ID: 9002523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs.
    Takagaki Y; Manley JL; MacDonald CC; Wilusz J; Shenk T
    Genes Dev; 1990 Dec; 4(12A):2112-20. PubMed ID: 1980119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRCA1-dependent and independent functions of BARD1.
    Irminger-Finger I; Leung WC
    Int J Biochem Cell Biol; 2002 Jun; 34(6):582-7. PubMed ID: 11943588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation.
    Hockert JA; Yeh HJ; MacDonald CC
    J Biol Chem; 2010 Jan; 285(1):695-704. PubMed ID: 19887456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3'-end formation.
    Murthy KG; Manley JL
    Genes Dev; 1995 Nov; 9(21):2672-83. PubMed ID: 7590244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3'-end processing of pre-mRNA.
    Beyer K; Dandekar T; Keller W
    J Biol Chem; 1997 Oct; 272(42):26769-79. PubMed ID: 9334264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DSEF-1 is a member of the hnRNP H family of RNA-binding proteins and stimulates pre-mRNA cleavage and polyadenylation in vitro.
    Bagga PS; Arhin GK; Wilusz J
    Nucleic Acids Res; 1998 Dec; 26(23):5343-50. PubMed ID: 9826757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53 inhibits mRNA 3' processing through its interaction with the CstF/BARD1 complex.
    Nazeer FI; Devany E; Mohammed S; Fonseca D; Akukwe B; Taveras C; Kleiman FE
    Oncogene; 2011 Jul; 30(27):3073-83. PubMed ID: 21383700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex protein interactions within the human polyadenylation machinery identify a novel component.
    Takagaki Y; Manley JL
    Mol Cell Biol; 2000 Mar; 20(5):1515-25. PubMed ID: 10669729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.