These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 10477757)
1. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. Kaverina I; Krylyshkina O; Small JV J Cell Biol; 1999 Sep; 146(5):1033-44. PubMed ID: 10477757 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of polarization of the shape of fibroblasts and epitheliocytes: Separation of the roles of microtubules and Rho-dependent actin-myosin contractility. Omelchenko T; Vasiliev JM; Gelfand IM; Feder HH; Bonder EM Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10452-7. PubMed ID: 12149446 [TBL] [Abstract][Full Text] [Related]
3. Targeting, capture, and stabilization of microtubules at early focal adhesions. Kaverina I; Rottner K; Small JV J Cell Biol; 1998 Jul; 142(1):181-90. PubMed ID: 9660872 [TBL] [Abstract][Full Text] [Related]
8. Muscle costameric protein, Chisel/Smpx, associates with focal adhesion complexes and modulates cell spreading in vitro via a Rac1/p38 pathway. Schindeler A; Lavulo L; Harvey RP Exp Cell Res; 2005 Jul; 307(2):367-80. PubMed ID: 15893749 [TBL] [Abstract][Full Text] [Related]
9. Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Izawa I; Amano M; Chihara K; Yamamoto T; Kaibuchi K Oncogene; 1998 Dec; 17(22):2863-71. PubMed ID: 9879992 [TBL] [Abstract][Full Text] [Related]
10. Microtubule dynamics differentially regulates Rho and Rac activity and triggers Rho-independent stress fiber formation in macrophage polykaryons. Ory S; Destaing O; Jurdic P Eur J Cell Biol; 2002 Jun; 81(6):351-62. PubMed ID: 12113476 [TBL] [Abstract][Full Text] [Related]
11. Enforced polarisation and locomotion of fibroblasts lacking microtubules. Kaverina I; Krylyshkina O; Gimona M; Beningo K; Wang YL; Small JV Curr Biol; 2000 Jun; 10(12):739-42. PubMed ID: 10873805 [TBL] [Abstract][Full Text] [Related]
12. Regulation of tension-induced mechanotranscriptional signals by the microtubule network in fibroblasts. D'Addario M; Arora PD; Ellen RP; McCulloch CA J Biol Chem; 2003 Dec; 278(52):53090-7. PubMed ID: 14561736 [TBL] [Abstract][Full Text] [Related]
13. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. Riveline D; Zamir E; Balaban NQ; Schwarz US; Ishizaki T; Narumiya S; Kam Z; Geiger B; Bershadsky AD J Cell Biol; 2001 Jun; 153(6):1175-86. PubMed ID: 11402062 [TBL] [Abstract][Full Text] [Related]
15. A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis. Kwan KM; Kirschner MW Development; 2005 Oct; 132(20):4599-610. PubMed ID: 16176947 [TBL] [Abstract][Full Text] [Related]
16. Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. Bhatt A; Kaverina I; Otey C; Huttenlocher A J Cell Sci; 2002 Sep; 115(Pt 17):3415-25. PubMed ID: 12154072 [TBL] [Abstract][Full Text] [Related]
17. Microtubule regulation of corneal fibroblast morphology and mechanical activity in 3-D culture. Kim A; Matthew Petroll W Exp Eye Res; 2007 Oct; 85(4):546-56. PubMed ID: 17716657 [TBL] [Abstract][Full Text] [Related]
18. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center. Rumsby M; Afsari F; Stark M; Hughson E Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596 [TBL] [Abstract][Full Text] [Related]
19. Nanometer targeting of microtubules to focal adhesions. Krylyshkina O; Anderson KI; Kaverina I; Upmann I; Manstein DJ; Small JV; Toomre DK J Cell Biol; 2003 Jun; 161(5):853-9. PubMed ID: 12782685 [TBL] [Abstract][Full Text] [Related]