These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 10477853)
1. Effect of a poly(propylene fumarate) foaming cement on the healing of bone defects. Lewandrowski KU; Cattaneo MV; Gresser JD; Wise DL; White RL; Bonassar L; Trantolo DJ Tissue Eng; 1999 Aug; 5(4):305-16. PubMed ID: 10477853 [TBL] [Abstract][Full Text] [Related]
2. Augmentation of osteoinduction with a biodegradable poly(propylene glycol-co-fumaric acid) bone graft extender. A histologic and histomorphometric study in rats. Lewandrowski KU; Bondre S; Gresser JD; Silva AE; Wise DL; Trantolo DJ Biomed Mater Eng; 1999; 9(5-6):325-34. PubMed ID: 10822488 [TBL] [Abstract][Full Text] [Related]
3. Porous poly(propylene fumarate) foam coating of orthotopic cortical bone grafts for improved osteoconduction. Lewandrowski KU; Bondre S; Hile DD; Thompson BM; Wise DL; Tomford WW; Trantolo DJ Tissue Eng; 2002 Dec; 8(6):1017-27. PubMed ID: 12542947 [TBL] [Abstract][Full Text] [Related]
4. Improved osteoconduction of cortical bone grafts by biodegradable foam coating. Lewandrowski KU; Bondre SP; Gresser JD; Wise DL; Tomford WW; Trantolo DJ Biomed Mater Eng; 1999; 9(5-6):265-75. PubMed ID: 10822482 [TBL] [Abstract][Full Text] [Related]
5. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Liu WC; Robu IS; Patel R; Leu MC; Velez M; Chu TM Biomed Mater; 2014 Aug; 9(4):045013. PubMed ID: 25065552 [TBL] [Abstract][Full Text] [Related]
6. Quantitative measures of osteoinductivity of a porous poly(propylene fumarate) bone graft extender. Lewandrowski KU; Hile DD; Thompson BM; Wise DL; Tomford WW; Trantolo DJ Tissue Eng; 2003 Feb; 9(1):85-93. PubMed ID: 12625957 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a porous, biodegradable biopolymer scaffold for mandibular reconstruction. Trantolo DJ; Sonis ST; Thompson BM; Wise DL; Lewandrowski KU; Hile DD Int J Oral Maxillofac Implants; 2003; 18(2):182-8. PubMed ID: 12705295 [TBL] [Abstract][Full Text] [Related]
8. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement. Lewandrowski KU; Gresser JD; Wise DL; White RL; Trantolo DJ Biomaterials; 2000 Feb; 21(3):293-8. PubMed ID: 10646946 [TBL] [Abstract][Full Text] [Related]
9. Injectable calcium phosphate cement as a bone-graft material around peri-implant dehiscence defects: a dog study. Arisan V; Ozdemir T; Anil A; Jansen JA; Ozer K Int J Oral Maxillofac Implants; 2008; 23(6):1053-62. PubMed ID: 19216274 [TBL] [Abstract][Full Text] [Related]
10. Characterization of porous injectable poly-(propylene fumarate)-based bone graft substitute. Kim CW; Talac R; Lu L; Moore MJ; Currier BL; Yaszemski MJ J Biomed Mater Res A; 2008 Jun; 85(4):1114-9. PubMed ID: 17941027 [TBL] [Abstract][Full Text] [Related]
11. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nano-hydroxyapatite. Lewandrowski KU; Bondre SP; Wise DL; Trantolo DJ Biomed Mater Eng; 2003; 13(2):115-24. PubMed ID: 12775902 [TBL] [Abstract][Full Text] [Related]
12. Cortical bone healing following laser osteotomy using 6.1 microm wavelength. Payne JT; Peavy GM; Reinisch L; Van Sickle DC Lasers Surg Med; 2001; 29(1):38-43. PubMed ID: 11500861 [TBL] [Abstract][Full Text] [Related]
13. Dimensional stability of the alveolar ridge after implantation of a bioabsorbable bone graft substitute: a radiographic and histomorphometric study in rats. Hile DD; Sonis ST; Doherty SA; Tian X; Zhang Q; Jee WS; Trantolo DJ J Oral Implantol; 2005; 31(2):68-76. PubMed ID: 15871525 [TBL] [Abstract][Full Text] [Related]
14. In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Hedberg EL; Kroese-Deutman HC; Shih CK; Crowther RS; Carney DH; Mikos AG; Jansen JA Biomaterials; 2005 Aug; 26(22):4616-23. PubMed ID: 15722131 [TBL] [Abstract][Full Text] [Related]
15. In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds. Wolfe MS; Dean D; Chen JE; Fisher JP; Han S; Rimnac CM; Mikos AG J Biomed Mater Res; 2002 Jul; 61(1):159-64. PubMed ID: 12001259 [TBL] [Abstract][Full Text] [Related]
16. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM. Hautamäki MP; Aho AJ; Alander P; Rekola J; Gunn J; Strandberg N; Vallittu PK Acta Orthop; 2008 Aug; 79(4):555-64. PubMed ID: 18766491 [TBL] [Abstract][Full Text] [Related]
18. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats. Lewandrowski KU; Gresser JD; Wise DL; Trantol DJ Biomaterials; 2000 Apr; 21(8):757-64. PubMed ID: 10721744 [TBL] [Abstract][Full Text] [Related]
19. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Lee JW; Kang KS; Lee SH; Kim JY; Lee BK; Cho DW Biomaterials; 2011 Jan; 32(3):744-52. PubMed ID: 20933279 [TBL] [Abstract][Full Text] [Related]
20. Healing potentials of polymethylmethacrylate bone cement combined with platelet gel in the critical-sized radial bone defect of rats. Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A PLoS One; 2018; 13(4):e0194751. PubMed ID: 29608574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]