BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 10479348)

  • 1. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship.
    Abraham MH; Le J
    J Pharm Sci; 1999 Sep; 88(9):868-80. PubMed ID: 10479348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the delta log P parameter of seiler.
    Abraham MH; Chadha HS; Whiting GS; Mitchell RC
    J Pharm Sci; 1994 Aug; 83(8):1085-100. PubMed ID: 7983591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen bonding. 47. Characterization of the ethylene glycol-heptane partition system: hydrogen bond acidity and basicity of peptides.
    Abraham MH; Martins F; Mitchell RC; Salter CJ
    J Pharm Sci; 1999 Feb; 88(2):241-7. PubMed ID: 9950645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain.
    Abraham MH; Chadha HS; Mitchell RC
    J Pharm Sci; 1994 Sep; 83(9):1257-68. PubMed ID: 7830242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-bonding. Part 36. Determination of blood brain distribution using octanol-water partition coefficients.
    Abraham MH; Chadha HS; Mitchell RC
    Drug Des Discov; 1995 Nov; 13(2):123-31. PubMed ID: 8872456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonding. 30. Solubility of gases and vapors in biological liquids and tissues.
    Abraham MH; Weathersby PK
    J Pharm Sci; 1994 Oct; 83(10):1450-6. PubMed ID: 7884668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear solvation energy relationships: 36. Molecular properties governing solubilities of organic nonelectrolytes in water.
    Kamlet MJ; Doherty RM; Abboud JL; Abraham MH; Taft RW
    J Pharm Sci; 1986 Apr; 75(4):338-49. PubMed ID: 3723354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of partitioning parameters of nonionic surfactants using calculated descriptors of molecular size, polarity, and hydrogen bonding.
    Altomare C; Carotti A; Trapani G; Liso G
    J Pharm Sci; 1997 Dec; 86(12):1417-25. PubMed ID: 9423157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydrophobic effect. 2. Relative importance of the hydrophobic effect on the solubility of hydrophobes and pharmaceuticals in H-bonded solvents.
    Ruelle P; Kesselring UW
    J Pharm Sci; 1998 Aug; 87(8):998-1014. PubMed ID: 9687345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubility properties in polymers and biological media 5: an analysis of the physicochemical properties which influence octanol-water partition coefficients of aliphatic and aromatic solutes.
    Taft RW; Abraham MH; Famini GR; Doherty RM; Abboud JL; Kamlet MJ
    J Pharm Sci; 1985 Aug; 74(8):807-14. PubMed ID: 4032261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubility properties in biological media 9: prediction of solubility and partition of organic nonelectrolytes in blood and tissues from solvatochromic parameters.
    Kamlet MJ; Doherty RM; Fiserova-Bergerova V; Carr PW; Abraham MH; Taft RW
    J Pharm Sci; 1987 Jan; 76(1):14-7. PubMed ID: 3585716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The factors that influence permeation across the blood-brain barrier.
    Abraham MH
    Eur J Med Chem; 2004 Mar; 39(3):235-40. PubMed ID: 15051171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The solubility of gases and vapours in dry octan-1-ol at 298 K.
    Abraham MH; Le J; Acree WE; Carr PW; Dallas AJ
    Chemosphere; 2001 Aug; 44(4):855-63. PubMed ID: 11482678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithms for skin permeability using hydrogen bond descriptors: the problem of steroids.
    Abraham MH; Martins F; Mitchell RC
    J Pharm Pharmacol; 1997 Sep; 49(9):858-65. PubMed ID: 9306252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures.
    Valko K; Du CM; Bevan CD; Reynolds DP; Abraham MH
    J Pharm Sci; 2000 Aug; 89(8):1085-96. PubMed ID: 10906732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting skin permeability from complex chemical mixtures.
    Riviere JE; Brooks JD
    Toxicol Appl Pharmacol; 2005 Oct; 208(2):99-110. PubMed ID: 16183383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous pK
    Tielker N; Tomazic D; Heil J; Kloss T; Ehrhart S; Güssregen S; Schmidt KF; Kast SM
    J Comput Aided Mol Des; 2016 Nov; 30(11):1035-1044. PubMed ID: 27554666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biorelevant Drug Solubility Enhancement Modeled by a Linear Solvation Energy Relationship.
    Niederquell A; Kuentz M
    J Pharm Sci; 2018 Jan; 107(1):503-506. PubMed ID: 28864357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular descriptors of N-arylhydroxamic acids: a tool in drug design.
    Tiwari V; Pande R
    Chem Biol Drug Des; 2006 Oct; 68(4):225-8. PubMed ID: 17105487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: octanol-water partition coefficients and aqueous solubilities.
    Leahy DE
    J Pharm Sci; 1986 Jul; 75(7):629-36. PubMed ID: 3761161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.