These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 10479562)

  • 41. Fast protein structure prediction using Monte Carlo simulations with modal moves.
    Carnevali P; Tóth G; Toubassi G; Meshkat SN
    J Am Chem Soc; 2003 Nov; 125(47):14244-5. PubMed ID: 14624550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An iterative fitting procedure for the determination of longitudinal NMR cross-correlation rates.
    Wang L; Kurochkin AV; Zuiderweg ER
    J Magn Reson; 2000 May; 144(1):175-85. PubMed ID: 10783290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overhauser dynamic nuclear polarization to study local water dynamics.
    Armstrong BD; Han S
    J Am Chem Soc; 2009 Apr; 131(13):4641-7. PubMed ID: 19290661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of the structure and dynamics of mastoparan-X during folding in aqueous TFE by CD and NMR spectroscopy.
    Crandall YM; Bruch MD
    Biopolymers; 2008 Mar; 89(3):197-209. PubMed ID: 18008325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of L-spin longitudinal quadrupolar relaxation in S[L] heteronuclear recoupling and S-spin magic-angle spinning NMR.
    Hu YY; Schmidt-Rohr K
    J Magn Reson; 2009 Apr; 197(2):193-207. PubMed ID: 19217811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of longitudinal and rotating frame relaxation times through fully J-decoupled homonuclear spectra.
    Guenneau F; Mutzenhardt P; Grandclaude D; Canet D
    J Magn Reson; 1999 Sep; 140(1):250-8. PubMed ID: 10479569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR relaxation interference effects and internal dynamics in gamma-cyclodextrin.
    Ghalebani L; Kotsyubynskyy D; Kowalewski J
    J Magn Reson; 2008 Nov; 195(1):1-8. PubMed ID: 18760946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simple method to measure 13CH2 heteronuclear dipolar cross-correlation spectral densities.
    Idiyatullin D; Daragan VA; Mayo KH
    J Magn Reson; 2004 Nov; 171(1):4-9. PubMed ID: 15504674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A theoretical and numerical consideration of the longitudinal and transverse relaxations in the rotating frame.
    Murase K
    Magn Reson Imaging; 2013 Nov; 31(9):1544-58. PubMed ID: 23993793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Origin of the correlation time dependence of coherence transfer distortions in rotating frame cross-relaxation spectra.
    Ghose R; Evans CA; Prestegard JH
    J Magn Reson; 1997 Oct; 128(2):207-16. PubMed ID: 9356275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ROESY with water flip back for high-field NMR of biomolecules.
    Fulton DB; Ni F
    J Magn Reson; 1997 Nov; 129(1):93-7. PubMed ID: 9405220
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Further efforts toward a molecular dynamics force field for simulations of peptides in 40% trifluoroethanol-water.
    Gerig JT
    J Phys Chem B; 2015 Apr; 119(16):5163-75. PubMed ID: 25806670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison of methods for calculating NMR cross-relaxation rates (NOESY and ROESY intensities) in small peptides.
    Feenstra KA; Peter C; Scheek RM; van Gunsteren WF; Mark AE
    J Biomol NMR; 2002 Jul; 23(3):181-94. PubMed ID: 12238590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Offset-compensated and zero-quantum suppressed ROESY provides accurate
    Boros S; Batta G
    Magn Reson Chem; 2016 Dec; 54(12):947-952. PubMed ID: 27432252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relaxation mode analysis of a peptide system: comparison with principal component analysis.
    Mitsutake A; Iijima H; Takano H
    J Chem Phys; 2011 Oct; 135(16):164102. PubMed ID: 22047223
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative radial imaging of porous particles beds with varying water contents.
    Hills BP; Babonneau F
    Magn Reson Imaging; 1994; 12(7):1065-74. PubMed ID: 7527890
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pore characterization through propagator-resolved transverse relaxation exchange.
    Washburn KE; Arns CH; Callaghan PT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051203. PubMed ID: 18643056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Longitudinal-relaxation effects on transverse magnetization and the nuclear-magnetic-resonance line shape.
    Guo Jx; Mao Xa
    Phys Rev B Condens Matter; 1994 Nov; 50(18):13461-13466. PubMed ID: 9975540
    [No Abstract]   [Full Text] [Related]  

  • 59. First Measurement of the Imaginary Part of the Transverse-Longitudinal Nuclear Response.
    Mandeville J; Alarcon R; Beck R; Bernstein A; Bertozzi W; Boeglin W; Boffi S; Cardman L; Comfort J; Dale D; Dodson G; Dolfini S; Dow K; Epstein M; Gilad S; Görgen J; Holtrop M; Jordan D; Kim W; Kowalski S; Laszewski R; Margaziotis D; Martinez D; McIlvain T; Miskimen R; Papanicolas C; Radici M; Tieger D; Turchinetz W; Weinstein L; Williamson S
    Phys Rev Lett; 1994 May; 72(21):3325-3328. PubMed ID: 10056169
    [No Abstract]   [Full Text] [Related]  

  • 60. Relaxation of energy from the transverse to the longitudinal direction of a cold-ion string in a storage ring.
    Hasse RW
    Phys Rev A; 1992 Oct; 46(8):5189-5198. PubMed ID: 9908740
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.