These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 10479696)

  • 1. A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retinal waves.
    Elliott T; Shadbolt NR
    J Neurosci; 1999 Sep; 19(18):7951-70. PubMed ID: 10479696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields.
    Davis ZW; Chapman B; Cheng HJ
    J Neurosci; 2015 Oct; 35(43):14612-23. PubMed ID: 26511250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal waves regulate afferent terminal targeting in the early visual pathway.
    Failor S; Chapman B; Cheng HJ
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):E2957-66. PubMed ID: 26038569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition for neurotrophic factors: ocular dominance columns.
    Elliott T; Shadbolt NR
    J Neurosci; 1998 Aug; 18(15):5850-8. PubMed ID: 9671672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of retinal waves and synaptic normalization in retinogeniculate development.
    Eglen SJ
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1382):497-506. PubMed ID: 10212494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections.
    Feller MB
    Neural Dev; 2009 Jul; 4():24. PubMed ID: 19580682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development.
    Tavazoie SF; Reid RC
    Nat Neurosci; 2000 Jun; 3(6):608-16. PubMed ID: 10816318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in v1.
    Huberman AD; Speer CM; Chapman B
    Neuron; 2006 Oct; 52(2):247-54. PubMed ID: 17046688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike timing and visual processing in the retinogeniculocortical pathway.
    Usrey WM
    Philos Trans R Soc Lond B Biol Sci; 2002 Dec; 357(1428):1729-37. PubMed ID: 12626007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation model for joint development of refined retinotopic map and ocular dominance columns.
    Woodbury GA; van der Zwan R; Gibson WG
    Vision Res; 2002 Sep; 42(19):2295-310. PubMed ID: 12220585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of ocular dominance columns in the absence of retinal input.
    Crowley JC; Katz LC
    Nat Neurosci; 1999 Dec; 2(12):1125-30. PubMed ID: 10570491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular integration in the human visual cortex.
    Horton JC
    Can J Ophthalmol; 2006 Oct; 41(5):584-93. PubMed ID: 17016529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.
    Cang J; RenterĂ­a RC; Kaneko M; Liu X; Copenhagen DR; Stryker MP
    Neuron; 2005 Dec; 48(5):797-809. PubMed ID: 16337917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo.
    Weliky M; Katz LC
    Science; 1999 Jul; 285(5427):599-604. PubMed ID: 10417392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated with Excitatory and Inhibitory Remodeling.
    Tschetter WW; Govindaiah G; Etherington IM; Guido W; Niell CM
    J Neurosci; 2018 May; 38(19):4531-4542. PubMed ID: 29661964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinogeniculate connections: A balancing act between connection specificity and receptive field diversity.
    Alonso JM; Yeh CI; Weng C; Stoelzel C
    Prog Brain Res; 2006; 154():3-13. PubMed ID: 17010700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental induction of an abnormal ipsilateral visual field representation in the geniculocortical pathway of normally pigmented cats.
    Schall JD; Ault SJ; Vitek DJ; Leventhal AG
    J Neurosci; 1988 Jun; 8(6):2039-48. PubMed ID: 3385488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the New World capuchin monkey (Cebus apella).
    Hess DT; Edwards MA
    J Comp Neurol; 1987 Oct; 264(3):409-20. PubMed ID: 2824572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.