BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10479720)

  • 1. Neocortical synchronized oscillations induced by thalamic disinhibition in vivo.
    Castro-Alamancos MA
    J Neurosci; 1999 Sep; 19(18):RC27. PubMed ID: 10479720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of synchronized oscillations induced by neocortical disinhibition in vivo.
    Castro-Alamancos MA
    J Neurosci; 2000 Dec; 20(24):9195-206. PubMed ID: 11124997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors.
    Castro-Alamancos MA; Rigas P
    J Physiol; 2002 Jul; 542(Pt 2):567-81. PubMed ID: 12122154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro.
    Jacobsen RB; Ulrich D; Huguenard JR
    J Neurophysiol; 2001 Sep; 86(3):1365-75. PubMed ID: 11535683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices.
    Thomson AM; Destexhe A
    Neuroscience; 1999; 92(4):1193-215. PubMed ID: 10426478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro.
    Lukatch HS; MacIver MB
    J Neurophysiol; 1997 May; 77(5):2427-45. PubMed ID: 9163368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike-and-wave oscillations based on the properties of GABAB receptors.
    Destexhe A
    J Neurosci; 1998 Nov; 18(21):9099-111. PubMed ID: 9787013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy.
    Seidenbecher T; Pape HC
    Eur J Neurosci; 2001 Apr; 13(8):1537-46. PubMed ID: 11328348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus.
    Bal T; Debay D; Destexhe A
    J Neurosci; 2000 Oct; 20(19):7478-88. PubMed ID: 11007907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of generalized absence epilepsy.
    Futatsugi Y; Riviello JJ
    Brain Dev; 1998 Mar; 20(2):75-9. PubMed ID: 9545175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma-aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study.
    Ulrich D; Huguenard JR
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13245-9. PubMed ID: 8917576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of GABA(A) and GABA(B) receptors in afterdischarge generation in rat hippocampal slices.
    Higashima M; Ohno K; Kinoshita H; Koshino Y
    Brain Res; 2000 May; 865(2):186-93. PubMed ID: 10821920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus.
    von Krosigk M; Monckton JE; Reiner PB; McCormick DA
    Neuroscience; 1999; 91(1):7-20. PubMed ID: 10336055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vasoactive intestinal peptide selectively depolarizes thalamic relay neurons and attenuates intrathalamic rhythmic activity.
    Lee SH; Cox CL
    J Neurophysiol; 2003 Aug; 90(2):1224-34. PubMed ID: 12711712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo.
    Heck N; Kilb W; Reiprich P; Kubota H; Furukawa T; Fukuda A; Luhmann HJ
    Cereb Cortex; 2007 Jan; 17(1):138-48. PubMed ID: 16452638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of GABA(B) receptors in convulsant-induced epileptiform activity in rat neocortex in vitro.
    Sutor B; Luhmann HJ
    Eur J Neurosci; 1998 Nov; 10(11):3417-27. PubMed ID: 9824455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abolition of spindle oscillations and 3-Hz absence seizurelike activity in the thalamus by using high-frequency stimulation: potential mechanism of action.
    Lee KH; Hitti FL; Shalinsky MH; Kim U; Leiter JC; Roberts DW
    J Neurosurg; 2005 Sep; 103(3):538-45. PubMed ID: 16235687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of GABA(A) and GABA(B) receptors to thalamic neuronal activity during spontaneous absence seizures in rats.
    Staak R; Pape HC
    J Neurosci; 2001 Feb; 21(4):1378-84. PubMed ID: 11160409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions in neocortical neurons of the rat in vitro.
    Deisz RA
    Neuroscience; 1999; 93(4):1241-9. PubMed ID: 10501448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.