These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 10480225)
21. A molecular dynamics study on the transport of a charged biomolecule in a polymeric adsorbent medium and its adsorption onto a charged ligand. Riccardi E; Wang JC; Liapis AI J Chem Phys; 2010 Aug; 133(8):084904. PubMed ID: 20815591 [TBL] [Abstract][Full Text] [Related]
22. The design by molecular dynamics modeling and simulations of porous polymer adsorbent media immobilized on the throughpore surfaces of polymeric monoliths. Riccardi E; Wang JC; Liapis AI J Chromatogr Sci; 2009 Jul; 47(6):459-66. PubMed ID: 19555551 [TBL] [Abstract][Full Text] [Related]
23. Model discrimination and estimation of the intraparticle mass transfer parameters for the adsorption of bovine serum albumin onto porous adsorbent particles by the use of experimental frontal analysis data. Heeter GA; Liapis AI J Chromatogr A; 1997 Jul; 776(1):3-13. PubMed ID: 9286073 [TBL] [Abstract][Full Text] [Related]
24. Adsorption in columns packed with porous adsorbent particles having partially fractal structures. Li M; Liapis AI J Sep Sci; 2013 Jun; 36(12):1913-24. PubMed ID: 23936911 [TBL] [Abstract][Full Text] [Related]
25. Determination of the pore connectivity and pore size distribution and pore spatial distribution of porous chromatographic particles from nitrogen sorption measurements and pore network modelling theory. Meyers JJ; Nahar S; Ludlow DK; Liapis AI J Chromatogr A; 2001 Jan; 907(1-2):57-71. PubMed ID: 11217048 [TBL] [Abstract][Full Text] [Related]
26. Adsorption of a single protein interacting with multiple ligands: inner radial humps in the concentration profiles induced by non-uniform ligand density distributions. Riccardi E; Liapis AI J Sep Sci; 2009 Dec; 32(23-24):4059-68. PubMed ID: 19950351 [TBL] [Abstract][Full Text] [Related]
27. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity. Nischang I J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891 [TBL] [Abstract][Full Text] [Related]
28. Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography. Schultze-Jena A; Boon MA; de Winter DAM; Bussmann PJT; Janssen AEM; van der Padt A J Chromatogr A; 2020 Feb; 1613():460688. PubMed ID: 31813564 [TBL] [Abstract][Full Text] [Related]
30. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography. Gritti F; Horvath K; Guiochon G J Chromatogr A; 2012 Nov; 1263():84-98. PubMed ID: 23040978 [TBL] [Abstract][Full Text] [Related]
31. Rational surface design for molecular dynamics simulations of porous polymer adsorbent media. Riccardi E; Wang JC; Liapis AI J Phys Chem B; 2008 Jun; 112(25):7478-88. PubMed ID: 18517244 [TBL] [Abstract][Full Text] [Related]
32. Modeling and analysis of the dynamic behavior of mechanisms that result in the development of inner radial humps in the concentration of a single adsorbate in the adsorbed phase of porous adsorbent particles observed in confocal scanning laser microscopy experiments: diffusional mass transfer and adsorption in the presence of an electrical double layer. Liapis AI; Grimes ; Lacki K; Neretnieks J Chromatogr A; 2001 Jul; 921(2):135-45. PubMed ID: 11471797 [TBL] [Abstract][Full Text] [Related]
33. Performance of agarose and gigaporous chromatographic media as function of pore-to-adsorbate size ratio over wide span from ovalbumin to virus like particles. Yang Y; Yu M; Ma G; Su Z; Zhang S J Chromatogr A; 2021 Feb; 1638():461879. PubMed ID: 33465583 [TBL] [Abstract][Full Text] [Related]
34. Virus-sized colloid transport in a single pore: model development and sensitivity analysis. Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707 [TBL] [Abstract][Full Text] [Related]
35. Protein and virus-like particle adsorption on perfusion chromatography media. Wu Y; Simons J; Hooson S; Abraham D; Carta G J Chromatogr A; 2013 Jul; 1297():96-105. PubMed ID: 23726244 [TBL] [Abstract][Full Text] [Related]
36. The effect of the pore structure and zeta potential of porous polymer monoliths on separation performance in ion-exchange mode. Liapis AI; Grimes BA J Sep Sci; 2007 Mar; 30(5):648-57. PubMed ID: 17461102 [TBL] [Abstract][Full Text] [Related]
37. The rationale for the optimum efficiency of columns packed with new 1.9μm fully porous Titan-C18 particles-a detailed investigation of the intra-particle diffusivity. Gritti F; Guiochon G J Chromatogr A; 2014 Aug; 1355():164-78. PubMed ID: 24969087 [TBL] [Abstract][Full Text] [Related]
38. Transport properties and size exclusion effects in wide-pore superficially porous particles. Maier RS; Schure MR Chem Eng Sci; 2018 Aug; 185():243-255. PubMed ID: 30613108 [TBL] [Abstract][Full Text] [Related]
39. Effective medium theory expressions for the effective diffusion in chromatographic beds filled with porous, non-porous and porous-shell particles and cylinders. Part I: Theory. Desmet G; Deridder S J Chromatogr A; 2011 Jan; 1218(1):32-45. PubMed ID: 21122865 [TBL] [Abstract][Full Text] [Related]
40. 1.1 μm superficially porous particles for liquid chromatography: part II: column packing and chromatographic performance. Blue LE; Jorgenson JW J Chromatogr A; 2015 Feb; 1380():71-80. PubMed ID: 25578043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]