BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10480229)

  • 1. Comparison between the isocratic and gradient retention behaviour of polypeptides in reversed-phase liquid chromatographic environments.
    Purcell AW; Zhao GL; Aguilar MI; Hearn MT
    J Chromatogr A; 1999 Aug; 852(1):43-57. PubMed ID: 10480229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands.
    Hearn MT; Zhao G
    Anal Chem; 1999 Nov; 71(21):4874-85. PubMed ID: 10565277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observations on the origin of the non-linear van't Hoff behaviour of polypeptides in hydrophobic environments.
    Boysen RI; Wang Y; Keah HH; Hearn MT
    Biophys Chem; 1999 Mar; 77(2-3):79-97. PubMed ID: 10326244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance liquid chromatography of amino acids, peptides and proteins. LXVII. Evaluation of bandwidth relationships of peptides related to human beta-endorphin, separated by gradient-elution reversed-phase high-performance liquid chromatography.
    Hearn MT; Aguilar MI
    J Chromatogr; 1986 Feb; 352():35-66. PubMed ID: 2939099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of peptide retention times in normal-phase liquid chromatography with only a single gradient run.
    Yoshida T; Okada T
    J Chromatogr A; 1999 May; 841(1):19-32. PubMed ID: 10360326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2005 Mar; 1068(2):279-87. PubMed ID: 15830934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance liquid chromatography of amino acids, peptides and proteins. LXXXV. Evaluation of the use of hydrophobicity coefficients for the prediction of peptide elution profiles.
    Hearn MT; Aguilar MI; Mant CT; Hodges RS
    J Chromatogr; 1988 Apr; 438(2):197-210. PubMed ID: 3384884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatographic Hydrophobicity Index by Fast-Gradient RP-HPLC:  A High-Throughput Alternative to log P/log D.
    Valkó K; Bevan C; Reynolds D
    Anal Chem; 1997 Jun; 69(11):2022-9. PubMed ID: 21639241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity due to conformational differences between helical and non-helical peptides in reversed-phase chromatography.
    Sereda TJ; Mant CT; Hodges RS
    J Chromatogr A; 1995 Mar; 695(2):205-21. PubMed ID: 7757204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance liquid chromatography of amino acids, peptides, and proteins. 123. Dynamics of peptides in reversed-phase high-performance liquid chromatography.
    Purcell AW; Aguilar MI; Hearn MT
    Anal Chem; 1993 Nov; 65(21):3038-47. PubMed ID: 8256866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance liquid chromatography of amino acids, peptides and proteins. CXV. Thermodynamic behaviour of peptides in reversed-phase chromatography.
    Purcell AW; Aguilar MI; Hearn MT
    J Chromatogr; 1992 Feb; 593(1-2):103-17. PubMed ID: 1639893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of helix formation for the retention of peptides in reversed-phase high-performance liquid chromatography.
    Wieprecht T; Rothemund S; Bienert M; Krause E
    J Chromatogr A; 2001 Mar; 912(1):1-12. PubMed ID: 11307972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a reversed-phase column (supelcosil LC-ABZ) under isocratic and gradient elution conditions for estimating octanol-water partition coefficients.
    Dias NC; Nawas MI; Poole CF
    Analyst; 2003 May; 128(5):427-33. PubMed ID: 12790192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversed-phase liquid chromatography of the opioid peptides--2. Quantitative structure-retention relationships and isocratic retention prediction.
    Dave K; Stobaugh JF; Riley CM
    J Pharm Biomed Anal; 1992 Jan; 10(1):49-60. PubMed ID: 1391083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature on retention of chiral compounds on a ristocetin A chiral stationary phase.
    Péter A; Vékes E; Armstrong DW
    J Chromatogr A; 2002 Jun; 958(1-2):89-107. PubMed ID: 12134834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational effects in reversed-phase high-performance liquid chromatography of polypeptides. II. The role of insulin A and B chains in the chromatographic behaviour of insulin.
    Purcell AW; Aguilar MI; Hearn MT
    J Chromatogr A; 1995 Sep; 711(1):71-9. PubMed ID: 7496496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature profiling of polypeptides in reversed-phase liquid chromatography. I. Monitoring of dimerization and unfolding of amphipathic alpha-helical peptides.
    Mant CT; Chen Y; Hodges RS
    J Chromatogr A; 2003 Aug; 1009(1-2):29-43. PubMed ID: 13677643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic studies of pressure-induced retention of peptides in reversed-phase liquid chromatography.
    Chen SH; Li CW
    J Chromatogr A; 2004 Jan; 1023(1):41-7. PubMed ID: 14760848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography. III. Retention and selectivity of proteins and peptides in gradient elution on non-porous monodisperse 1.5-microns reversed-phase silicas.
    Jilge G; Janzen R; Giesche H; Unger KK; Kinkel JN; Hearn MT
    J Chromatogr; 1987 Jun; 397():71-80. PubMed ID: 2821038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.