These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10480381)

  • 1. Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat.
    Ikeda TM; Gray MW
    Plant Mol Biol; 1999 Jul; 40(4):567-78. PubMed ID: 10480381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage.
    Cermakian N; Ikeda TM; Cedergren R; Gray MW
    Nucleic Acids Res; 1996 Feb; 24(4):648-54. PubMed ID: 8604305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis.
    Hedtke B; Börner T; Weihe A
    Science; 1997 Aug; 277(5327):809-11. PubMed ID: 9242608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album.
    Weihe A; Hedtke B; Börner T
    Nucleic Acids Res; 1997 Jun; 25(12):2319-25. PubMed ID: 9171081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of plant phage-type RNA polymerases: the genome of the basal angiosperm Nuphar advena encodes two mitochondrial and one plastid phage-type RNA polymerases.
    Yin C; Richter U; Börner T; Weihe A
    BMC Evol Biol; 2010 Dec; 10():379. PubMed ID: 21134269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro promoter recognition by the catalytic subunit of plant phage-type RNA polymerases.
    Bohne AV; Teubner M; Liere K; Weihe A; Börner T
    Plant Mol Biol; 2016 Oct; 92(3):357-69. PubMed ID: 27497992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid mutagenesis and purification of phage RNA polymerases.
    He B; Rong M; Lyakhov D; Gartenstein H; Diaz G; Castagna R; McAllister WT; Durbin RK
    Protein Expr Purif; 1997 Feb; 9(1):142-51. PubMed ID: 9116496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroplast development affects expression of phage-type RNA polymerases in barley leaves.
    Emanuel C; Weihe A; Graner A; Hess WR; Börner T
    Plant J; 2004 May; 38(3):460-72. PubMed ID: 15086795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thumb's knuckle. Flexibility in the thumb subdomain of T7 RNA polymerase is revealed by the structure of a chimeric T7/T3 RNA polymerase.
    Sousa R; Rose J; Wang BC
    J Mol Biol; 1994 Nov; 244(1):6-12. PubMed ID: 7966322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensatory evolution in response to a novel RNA polymerase: orthologous replacement of a central network gene.
    Bull JJ; Springman R; Molineux IJ
    Mol Biol Evol; 2007 Apr; 24(4):900-8. PubMed ID: 17220516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual targeting of phage-type RNA polymerase to both mitochondria and plastids is due to alternative translation initiation in single transcripts.
    Kobayashi Y; Dokiya Y; Sugita M
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1106-13. PubMed ID: 11741306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a Plasmodium falciparum RNA polymerase gene with similarity to mitochondrial RNA polymerases.
    Li J; Maga JA; Cermakian N; Cedergren R; Feagin JE
    Mol Biochem Parasitol; 2001 Apr; 113(2):261-9. PubMed ID: 11295180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes.
    Kühn K; Bohne AV; Liere K; Weihe A; Börner T
    Plant Cell; 2007 Mar; 19(3):959-71. PubMed ID: 17400896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of bacteriophage T7 RNA polymerase by linker insertion mutagenesis.
    Gross L; Chen WJ; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):488-505. PubMed ID: 1453459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity.
    Raskin CA; Diaz G; Joho K; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):506-15. PubMed ID: 1453460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a gene encoding a single-subunit bacteriophage-type RNA polymerase from maize which is alternatively spliced.
    Young DA; Allen RL; Harvey AJ; Lonsdale DM
    Mol Gen Genet; 1998 Oct; 260(1):30-7. PubMed ID: 9829825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional chimeric DNA primase: the Cys4 zinc-binding domain of bacteriophage T3 primase fused to the helicase of bacteriophage T7.
    Hine AV; Richardson CC
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12327-31. PubMed ID: 7991626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic organization and organ-specific expression of a nuclear gene encoding phage-type RNA polymerase in Nicotiana sylvestris.
    Kobayashi Y; Dokiya Y; Sugiura M; Niwa Y; Sugita M
    Gene; 2001 Nov; 279(1):33-40. PubMed ID: 11722843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of a 21.1-kb fragment of wheat chloroplast DNA bearing RNA polymerase subunit (rpo) genes.
    Ohnishi Y; Tajiri H; Matsuoka Y; Tsunewaki K
    Genome; 1999 Dec; 42(6):1042-9. PubMed ID: 10659768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T7 RNA polymerase mutants with altered promoter specificities.
    Raskin CA; Diaz GA; McAllister WT
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3147-51. PubMed ID: 8475053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.