These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 10480613)

  • 1. Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans.
    Bradley SJ; Kingwell BA; McConell GK
    Diabetes; 1999 Sep; 48(9):1815-21. PubMed ID: 10480613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects.
    Kingwell BA; Formosa M; Muhlmann M; Bradley SJ; McConell GK
    Diabetes; 2002 Aug; 51(8):2572-80. PubMed ID: 12145173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise-induced hyperaemia and leg oxygen uptake are not altered during effective inhibition of nitric oxide synthase with N(G)-nitro-L-arginine methyl ester in humans.
    Frandsenn U; Bangsbo J; Sander M; Höffner L; Betak A; Saltin B; Hellsten Y
    J Physiol; 2001 Feb; 531(Pt 1):257-64. PubMed ID: 11179408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N(G)-monomethyl-L-arginine alters insulin-mediated calf blood flow but not glucose disposal in the elderly.
    Meneilly GS; Elliott T; Battistini B; Floras JS
    Metabolism; 2001 Mar; 50(3):306-10. PubMed ID: 11230783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leg oxygen uptake in the initial phase of intense exercise is slowed by a marked reduction in oxygen delivery.
    Christensen PM; Nyberg M; Mortensen SP; Nielsen JJ; Secher NH; Damsgaard R; Hellsten Y; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2013 Aug; 305(3):R313-21. PubMed ID: 23720134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.
    Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y
    J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition.
    Heinonen I; Saltin B; Kemppainen J; Sipilä HT; Oikonen V; Nuutila P; Knuuti J; Kalliokoski K; Hellsten Y
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1510-7. PubMed ID: 21257921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide in the regulation of vasomotor tone in human skeletal muscle.
    Rådegran G; Saltin B
    Am J Physiol; 1999 Jun; 276(6):H1951-60. PubMed ID: 10362675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NG-monomethyl-L-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF- I: possible role of nitric oxide in muscle protein synthesis.
    Fryburg DA
    J Clin Invest; 1996 Mar; 97(5):1319-28. PubMed ID: 8636445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic nitric oxide synthase inhibition increases insulin sensitivity in man.
    Butler R; Morris AD; Struthers AD
    Clin Sci (Lond); 1998 Feb; 94(2):175-80. PubMed ID: 9536926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haemodynamic effects of inhibition of nitric oxide synthase and of L-arginine at rest and during exercise.
    Brett SE; Cockcroft JR; Mant TG; Ritter JM; Chowienczyk PJ
    J Hypertens; 1998 Apr; 16(4):429-35. PubMed ID: 9797188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans.
    Hillig T; Krustrup P; Fleming I; Osada T; Saltin B; Hellsten Y
    J Physiol; 2003 Jan; 546(Pt 1):307-14. PubMed ID: 12509498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling.
    Sjøberg KA; Frøsig C; Kjøbsted R; Sylow L; Kleinert M; Betik AC; Shaw CS; Kiens B; Wojtaszewski JFP; Rattigan S; Richter EA; McConell GK
    Diabetes; 2017 Jun; 66(6):1501-1510. PubMed ID: 28292969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide synthase inhibition with N(G)-monomethyl-l-arginine: Determining the window of effect in the human vasculature.
    Kithas AC; Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Hydren JR; Nelson AD; Jessop JE; Bledsoe AD; Morgan DE; Richardson RS
    Nitric Oxide; 2020 Nov; 104-105():51-60. PubMed ID: 32979497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single passive leg movement assessment of vascular function: contribution of nitric oxide.
    Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Kithas AC; Hydren JR; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS
    J Appl Physiol (1985); 2017 Dec; 123(6):1468-1476. PubMed ID: 28860173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of nitric oxide synthase and cyclooxygenase in leg vasodilation and oxygen consumption during prolonged low-intensity exercise in untrained humans.
    Schrage WG; Wilkins BW; Johnson CP; Eisenach JH; Limberg JK; Dietz NM; Curry TB; Joyner MJ
    J Appl Physiol (1985); 2010 Sep; 109(3):768-77. PubMed ID: 20558755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine.
    Mortensen SP; González-Alonso J; Bune LT; Saltin B; Pilegaard H; Hellsten Y
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1140-8. PubMed ID: 19118095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans.
    Hickner RC; Fisher JS; Ehsani AA; Kohrt WM
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H405-10. PubMed ID: 9249515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of nitric oxide to the blood pressure and arterial responses to exercise in humans.
    Campbell R; Fisher JP; Sharman JE; McDonnell BJ; Frenneaux MP
    J Hum Hypertens; 2011 Apr; 25(4):262-70. PubMed ID: 20505750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive leg movement and nitric oxide-mediated vascular function: the impact of age.
    Trinity JD; Groot HJ; Layec G; Rossman MJ; Ives SJ; Morgan DE; Gmelch BS; Bledsoe A; Richardson RS
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H672-9. PubMed ID: 25576629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.