BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10480926)

  • 1. MutS recognition of exocyclic DNA adducts that are endogenous products of lipid oxidation.
    Johnson KA; Mierzwa ML; Fink SP; Marnett LJ
    J Biol Chem; 1999 Sep; 274(38):27112-8. PubMed ID: 10480926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative contribution of adduct blockage and DNA repair on template utilization during replication of 1,N2-propanodeoxyguanosine and pyrimido.
    Fink SP; Marnett LJ
    Mutat Res; 2001 Apr; 485(3):209-18. PubMed ID: 11267832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding discrimination of MutS to a set of lesions and compound lesions (base damage and mismatch) reveals its potential role as a cisplatin-damaged DNA sensing protein.
    Fourrier L; Brooks P; Malinge JM
    J Biol Chem; 2003 Jun; 278(23):21267-75. PubMed ID: 12654906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of propanodeoxyguanosine by nucleotide excision repair in vivo and in vitro.
    Johnson KA; Fink SP; Marnett LJ
    J Biol Chem; 1997 Apr; 272(17):11434-8. PubMed ID: 9111054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement for Phe36 for DNA binding and mismatch repair by Escherichia coli MutS protein.
    Yamamoto A; Schofield MJ; Biswas I; Hsieh P
    Nucleic Acids Res; 2000 Sep; 28(18):3564-9. PubMed ID: 10982877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during dna replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS).
    Terato H; Masaoka A; Kobayashi M; Fukushima S; Ohyama Y; Yoshida M; Ide H
    J Biol Chem; 1999 Aug; 274(35):25144-50. PubMed ID: 10455196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch.
    Lamers MH; Perrakis A; Enzlin JH; Winterwerp HH; de Wind N; Sixma TK
    Nature; 2000 Oct; 407(6805):711-7. PubMed ID: 11048711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The MutS C terminus is essential for mismatch repair activity in vivo.
    Calmann MA; Nowosielska A; Marinus MG
    J Bacteriol; 2005 Sep; 187(18):6577-9. PubMed ID: 16159793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli.
    Mellon I; Champe GN
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1292-7. PubMed ID: 8577757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of MutS mismatch repair protein to DNA containing UV photoproducts, "mismatched" opposite Watson--Crick and novel nucleotides, in different DNA sequence contexts.
    Hoffman PD; Wang H; Lawrence CW; Iwai S; Hanaoka F; Hays JB
    DNA Repair (Amst); 2005 Aug; 4(9):983-93. PubMed ID: 15996534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Phe-X-Glu DNA binding motif of MutS. The role of hydrogen bonding in mismatch recognition.
    Schofield MJ; Brownewell FE; Nayak S; Du C; Kool ET; Hsieh P
    J Biol Chem; 2001 Dec; 276(49):45505-8. PubMed ID: 11602569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional excision in methyl-directed mismatch repair.
    Grilley M; Griffith J; Modrich P
    J Biol Chem; 1993 Jun; 268(16):11830-7. PubMed ID: 8505311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of MutS ATP hydrolysis by DNA cofactors.
    Bjornson KP; Allen DJ; Modrich P
    Biochemistry; 2000 Mar; 39(11):3176-83. PubMed ID: 10715140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methyl-directed mismatch repair is bidirectional.
    Cooper DL; Lahue RS; Modrich P
    J Biol Chem; 1993 Jun; 268(16):11823-9. PubMed ID: 8389365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of mismatch repair proteins.
    Yang W
    Mutat Res; 2000 Aug; 460(3-4):245-56. PubMed ID: 10946232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between the mismatch repair and nucleotide excision repair pathways in the prevention of 5-azacytidine-induced CG-to-GC mutations in Escherichia coli.
    Pitsikas P; Polosina YY; Cupples CG
    DNA Repair (Amst); 2009 Mar; 8(3):354-9. PubMed ID: 19100865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MutS preferentially recognizes cisplatin- over oxaliplatin-modified DNA.
    Zdraveski ZZ; Mello JA; Farinelli CK; Essigmann JM; Marinus MG
    J Biol Chem; 2002 Jan; 277(2):1255-60. PubMed ID: 11705991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP increases the affinity between MutS ATPase domains. Implications for ATP hydrolysis and conformational changes.
    Lamers MH; Georgijevic D; Lebbink JH; Winterwerp HH; Agianian B; de Wind N; Sixma TK
    J Biol Chem; 2004 Oct; 279(42):43879-85. PubMed ID: 15297450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA mismatch repair: the hands of a genome guardian.
    Hopfner KP; Tainer JA
    Structure; 2000 Dec; 8(12):R237-41. PubMed ID: 11188699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of mutS expression and mutation in natural isolates of pathogenic Escherichia coli.
    Li B; Tsui HT; LeClerc JE; Dey M; Winkler ME; Cebula TA
    Microbiology (Reading); 2003 May; 149(Pt 5):1323-1331. PubMed ID: 12724393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.