These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 10481014)

  • 1. A piston model for transmembrane signaling of the aspartate receptor.
    Ottemann KM; Xiao W; Shin YK; Koshland DE
    Science; 1999 Sep; 285(5434):1751-4. PubMed ID: 10481014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain.
    Cochran AG; Kim PS
    Science; 1996 Feb; 271(5252):1113-6. PubMed ID: 8599087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ; Falke JJ
    Biochemistry; 2005 Feb; 44(5):1550-60. PubMed ID: 15683239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor.
    Swain KE; Gonzalez MA; Falke JJ
    Biochemistry; 2009 Oct; 48(39):9266-77. PubMed ID: 19705835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signaling by the Escherichia coli aspartate chemoreceptor Tar with a single cytoplasmic domain per dimer.
    Tatsuno I; Homma M; Oosawa K; Kawagishi I
    Science; 1996 Oct; 274(5286):423-5. PubMed ID: 8832891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.
    Trammell MA; Falke JJ
    Biochemistry; 1999 Jan; 38(1):329-36. PubMed ID: 9890914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of a conserved alpha-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning.
    Bass RB; Falke JJ
    J Biol Chem; 1998 Sep; 273(39):25006-14. PubMed ID: 9737956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An allosteric model for transmembrane signaling in bacterial chemotaxis.
    Rao CV; Frenklach M; Arkin AP
    J Mol Biol; 2004 Oct; 343(2):291-303. PubMed ID: 15451661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives: signal transduction. Proteins in motion.
    Gerstein M; Chothia C
    Science; 1999 Sep; 285(5434):1682-3. PubMed ID: 10523185
    [No Abstract]   [Full Text] [Related]  

  • 11. Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
    Miller AS; Falke JJ
    Biochemistry; 2004 Feb; 43(7):1763-70. PubMed ID: 14967017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
    Chervitz SA; Falke JJ
    J Biol Chem; 1995 Oct; 270(41):24043-53. PubMed ID: 7592603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of chemotactic signal gain via modulation of a pre-formed receptor array.
    Irieda H; Homma M; Homma M; Kawagishi I
    J Biol Chem; 2006 Aug; 281(33):23880-6. PubMed ID: 16679313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of transmembrane signaling by the Escherichia coli aspartate receptor.
    Stoddard BL; Bui JD; Koshland DE
    Biochemistry; 1992 Dec; 31(48):11978-83. PubMed ID: 1457398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state.
    Bornhorst JA; Falke JJ
    Biochemistry; 2000 Aug; 39(31):9486-93. PubMed ID: 10924144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR.
    Ottemann KM; Thorgeirsson TE; Kolodziej AF; Shin YK; Koshland DE
    Biochemistry; 1998 May; 37(20):7062-9. PubMed ID: 9585515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of aspartate receptor signaling complex reveals that the homogeneous two-state model is inadequate: development of a heterogeneous two-state model.
    Bornhorst JA; Falke JJ
    J Mol Biol; 2003 Mar; 326(5):1597-614. PubMed ID: 12595268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal amplification in a lattice of coupled protein kinases.
    Goldman JP; Levin MD; Bray D
    Mol Biosyst; 2009 Dec; 5(12):1853-9. PubMed ID: 19768197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of sensory receptor signaling by covalent modification.
    Borkovich KA; Alex LA; Simon MI
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6756-60. PubMed ID: 1495964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.