These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10482414)

  • 1. Porous hydroxyapatite ceramics and their ability to be fixed by commercially available screws.
    Ono I; Tateshita T; Nakajima T
    Biomaterials; 1999 Sep; 20(17):1595-602. PubMed ID: 10482414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a high density polyethylene fixing system for hydroxyapatite ceramic implants.
    Ono I; Tateshita T; Nakajima T
    Biomaterials; 2000 Jan; 21(2):143-51. PubMed ID: 10632396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of titanium fixation screw for hydroxyapatite osteosynthesis (APACERAM).
    Tanaka Y
    Surg Neurol; 2008 Nov; 70(5):545-9; discussion 549. PubMed ID: 18291488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technique for fixing a temporalis muscle using a titanium plate to the implanted hydroxyapatite ceramics for bone defects.
    Ono I; Tateshita T; Sasaki T; Matsumoto M; Kodama N
    J Craniofac Surg; 2001 May; 12(3):292-8. PubMed ID: 11358105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the RIVET fixation system for cranioplasty using the pull-out technique.
    Sakamoto Y; Minabe T; Kato T; Kishi K
    J Craniomaxillofac Surg; 2015 Mar; 43(2):281-4. PubMed ID: 25555895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acetabular component in total hip arthroplasty. Evaluation of different fixation principles.
    Thanner J
    Acta Orthop Scand Suppl; 1999 Aug; 286():1-41. PubMed ID: 10572504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite enhancement of posterior spinal instrumentation fixation.
    Spivak JM; Neuwirth MG; Labiak JJ; Kummer FJ; Ricci JL
    Spine (Phila Pa 1976); 1994 Apr; 19(8):955-64. PubMed ID: 8009355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Conditions for Absorbable Fixation of Hydroxyapatite Ceramic Implants.
    Sakamoto Y; Kishi K
    J Craniofac Surg; 2018 Jan; 29(1):248-250. PubMed ID: 29287001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel, hydroxyapatite-based screw-like device for anterior cruciate ligament (ACL) reconstructions.
    Schumacher TC; Tushtev K; Wagner U; Becker C; Große Holthaus M; Hein SB; Haack J; Heiss C; Engelhardt M; El Khassawna T; Rezwan K
    Knee; 2017 Oct; 24(5):933-939. PubMed ID: 28743379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimising implant anchorage (augmentation) during fixation of osteoporotic fractures: is there a role for bone-graft substitutes?
    Larsson S; Procter P
    Injury; 2011 Sep; 42 Suppl 2():S72-6. PubMed ID: 21839441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone replacement with porous hydroxyapatite blocks and titanium screw implants: an experimental study.
    Schliephake H; Neukam FW
    J Oral Maxillofac Surg; 1991 Feb; 49(2):151-6. PubMed ID: 1846649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in bio-mechanical adhesion of screws used in medical field: first application in spinal surgery.
    Guglielmino E; La Rosa G; Russo TC; Torrisi L
    Biomed Mater Eng; 1995; 5(1):1-7. PubMed ID: 7773142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics.
    Omae H; Mochizuki Y; Yokoya S; Adachi N; Ochi M
    J Biomed Mater Res A; 2006 Nov; 79(2):329-37. PubMed ID: 16817208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of hydroxyapatite ceramics with controlled pore characteristics by slip casting.
    Yao X; Tan S; Jiang D
    J Mater Sci Mater Med; 2005 Feb; 16(2):161-5. PubMed ID: 15744605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study.
    Hasegawa T; Inufusa A; Imai Y; Mikawa Y; Lim TH; An HS
    Spine J; 2005; 5(3):239-43. PubMed ID: 15863077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zirconia-hydroxyapatite composite material with micro porous structure.
    Matsumoto TJ; An SH; Ishimoto T; Nakano T; Matsumoto T; Imazato S
    Dent Mater; 2011 Nov; 27(11):e205-12. PubMed ID: 21816461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the pullout strength of cancellous bone screws.
    Chapman JR; Harrington RM; Lee KM; Anderson PA; Tencer AF; Kowalski D
    J Biomech Eng; 1996 Aug; 118(3):391-8. PubMed ID: 8872262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coating titanium implants with bioglass and with hydroxyapatite. A comparative study in sheep.
    Lopez-Sastre S; Gonzalo-Orden JM; Altónaga JA; Altónaga JR; Orden MA
    Int Orthop; 1998; 22(6):380-3. PubMed ID: 10093806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs.
    Upasani VV; Farnsworth CL; Tomlinson T; Chambers RC; Tsutsui S; Slivka MA; Mahar AT; Newton PO
    Spine (Phila Pa 1976); 2009 Feb; 34(4):335-43. PubMed ID: 19182704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.