BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 10482526)

  • 1. The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties.
    Lin B; Covalle KL; Maddock JR
    J Bacteriol; 1999 Sep; 181(18):5825-32. PubMed ID: 10482526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alanine scan mutagenesis of the switch I domain of the Caulobacter crescentus CgtA protein reveals critical amino acids required for in vivo function.
    Lin B; Skidmore JM; Bhatt A; Pfeffer SM; Pawloski L; Maddock JR
    Mol Microbiol; 2001 Feb; 39(4):924-34. PubMed ID: 11251813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor.
    Lin B; Maddock JR
    FEBS Lett; 2001 Jan; 489(1):108-11. PubMed ID: 11231024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal domain of the Caulobacter crescentus CgtA protein does not function as a guanine nucleotide exchange factor.
    Lin B; Maddock JR
    FEBS Lett; 2000 Oct; 484(1):29-32. PubMed ID: 11056216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase.
    Wout P; Pu K; Sullivan SM; Reese V; Zhou S; Lin B; Maddock JR
    J Bacteriol; 2004 Aug; 186(16):5249-57. PubMed ID: 15292126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP-binding proteins.
    Maddock J; Bhatt A; Koch M; Skidmore J
    J Bacteriol; 1997 Oct; 179(20):6426-31. PubMed ID: 9335292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Caulobacter crescentus CgtAC protein cosediments with the free 50S ribosomal subunit.
    Lin B; Thayer DA; Maddock JR
    J Bacteriol; 2004 Jan; 186(2):481-9. PubMed ID: 14702318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides.
    Pisareva VP; Pisarev AV; Hellen CU; Rodnina MV; Pestova TV
    J Biol Chem; 2006 Dec; 281(52):40224-35. PubMed ID: 17062564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of recombinant ADP-ribosylation factor 6, an approximately 20-kDa guanine nucleotide-binding protein, in an activated GTP-bound state.
    Welsh CF; Moss J; Vaughan M
    J Biol Chem; 1994 Jun; 269(22):15583-7. PubMed ID: 8195204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein.
    Dholakia JN; Wahba AJ
    J Biol Chem; 1989 Jan; 264(1):546-50. PubMed ID: 2491852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-alpha, and guanine nucleotides.
    Shapiro AD; Pfeffer SR
    J Biol Chem; 1995 May; 270(19):11085-90. PubMed ID: 7744738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding and hydrolysis of guanine nucleotides by Sec4p, a yeast protein involved in the regulation of vesicular traffic.
    Kabcenell AK; Goud B; Northup JK; Novick PJ
    J Biol Chem; 1990 Jun; 265(16):9366-72. PubMed ID: 2111819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rabbit intestine contains a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein.
    Ohga N; Kikuchi A; Ueda T; Yamamoto J; Takai Y
    Biochem Biophys Res Commun; 1989 Sep; 163(3):1523-33. PubMed ID: 2506864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era.
    Sullivan SM; Mishra R; Neubig RR; Maddock JR
    J Bacteriol; 2000 Jun; 182(12):3460-6. PubMed ID: 10852878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor-stimulated guanine-nucleotide-triphosphate binding to guanine-nucleotide-binding regulatory proteins. Nucleotide exchange and beta-subunit-mediated phosphotransfer reactions.
    Kaldenberg-Stasch S; Baden M; Fesseler B; Jakobs KH; Wieland T
    Eur J Biochem; 1994 Apr; 221(1):25-33. PubMed ID: 8168513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rac1, a low-molecular-mass GTP-binding-protein with high intrinsic GTPase activity and distinct biochemical properties.
    Ménard L; Tomhave E; Casey PJ; Uhing RJ; Snyderman R; Didsbury JR
    Eur J Biochem; 1992 Jun; 206(2):537-46. PubMed ID: 1597193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Mg2+ and guanine nucleotide exchange factor on the binding of guanine nucleotides to eukaryotic initiation factor 2.
    Panniers R; Rowlands AG; Henshaw EC
    J Biol Chem; 1988 Apr; 263(12):5519-25. PubMed ID: 3356694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activities of mutant Sar1 proteins in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the endoplasmic reticulum to the Golgi apparatus.
    Saito Y; Kimura K; Oka T; Nakano A
    J Biochem; 1998 Oct; 124(4):816-23. PubMed ID: 9756629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state.
    Haney SA; Broach JR
    J Biol Chem; 1994 Jun; 269(24):16541-8. PubMed ID: 8206969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.