BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 10482770)

  • 1. Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores.
    Reyes-Harde M; Potter BV; Galione A; Stanton PK
    J Neurophysiol; 1999 Sep; 82(3):1569-76. PubMed ID: 10482770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric-oxide-guanylyl-cyclase-dependent and -independent components of multiple forms of long-term synaptic depression.
    Gage AT; Reyes M; Stanton PK
    Hippocampus; 1997; 7(3):286-95. PubMed ID: 9228526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium channel activation facilitated by nitric oxide in retinal ganglion cells.
    Hirooka K; Kourennyi DE; Barnes S
    J Neurophysiol; 2000 Jan; 83(1):198-206. PubMed ID: 10634867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo microdialysis study of a specific inhibitor of soluble guanylyl cyclase on the glutamate receptor/nitric oxide/cyclic GMP pathway.
    Fedele E; Jin Y; Varnier G; Raiteri M
    Br J Pharmacol; 1996 Oct; 119(3):590-4. PubMed ID: 8894183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells.
    Mejía-García TA; Portugal CC; Encarnação TG; Prado MA; Paes-de-Carvalho R
    Cell Signal; 2013 Dec; 25(12):2424-39. PubMed ID: 23958999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically induced, activity-independent LTD elicited by simultaneous activation of PKG and inhibition of PKA.
    Santschi L; Reyes-Harde M; Stanton PK
    J Neurophysiol; 1999 Sep; 82(3):1577-89. PubMed ID: 10482771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus.
    Reyes-Harde M; Empson R; Potter BV; Galione A; Stanton PK
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4061-6. PubMed ID: 10097163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores.
    Reyes M; Stanton PK
    J Neurosci; 1996 Oct; 16(19):5951-60. PubMed ID: 8815877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signalling pathway of nitric oxide in synaptic GABA release in the rat paraventricular nucleus.
    Li DP; Chen SR; Finnegan TF; Pan HL
    J Physiol; 2004 Jan; 554(Pt 1):100-10. PubMed ID: 14678495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway.
    Clementi E; Riccio M; Sciorati C; Nisticò G; Meldolesi J
    J Biol Chem; 1996 Jul; 271(30):17739-45. PubMed ID: 8663443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors.
    Marcoli M; Cervetto C; Paluzzi P; Guarnieri S; Raiteri M; Maura G
    Neurochem Int; 2006 Jul; 49(1):12-9. PubMed ID: 16469416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2007 Sep; 26(6):1537-47. PubMed ID: 17714493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.
    Takeda-Nakazawa H; Harada N; Shen J; Kubo N; Zenner HP; Yamashita T
    Hear Res; 2007 Aug; 230(1-2):93-104. PubMed ID: 17722255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of ryanodine receptors in the cyclic ADP ribose modulation of the M-like current in rodent m1 muscarinic receptor-transformed NG108-15 cells.
    Bowden SE; Selyanko AA; Robbins J
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):23-34. PubMed ID: 10432336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nitric oxide--cyclic GMP pathway and synaptic depression in rat hippocampal slices.
    Boulton CL; Irving AJ; Southam E; Potier B; Garthwaite J; Collingridge GL
    Eur J Neurosci; 1994 Oct; 6(10):1528-35. PubMed ID: 7850017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of presynaptic adenosine A1 receptor responses by nitric oxide and superoxide in rat hippocampus.
    Shahraki A; Stone TW
    Eur J Neurosci; 2004 Aug; 20(3):719-28. PubMed ID: 15255982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic GMP-dependent but G-kinase-independent inhibition of Ca2+-dependent Cl- currents by NO donors in cat tracheal smooth muscle.
    Waniishi Y; Inoue R; Morita H; Teramoto N; Abe K; Ito Y
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):719-31. PubMed ID: 9714855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does nitric oxide modulate transmitter release at the mammalian neuromuscular junction?
    Nickels TJ; Reed GW; Drummond JT; Blevins DE; Lutz MC; Wilson DF
    Clin Exp Pharmacol Physiol; 2007 Apr; 34(4):318-26. PubMed ID: 17324144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide interacts with oxygen free radicals to evoke the release of adenosine and adenine nucleotides from rat hippocampal slices.
    Broad RM; Fallahi N; Fredholm BB
    J Auton Nerv Syst; 2000 Jul; 81(1-3):82-6. PubMed ID: 10869705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP.
    Volk T; Mäding K; Hensel M; Kox WJ
    J Cell Physiol; 1997 Sep; 172(3):296-305. PubMed ID: 9284949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.