These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10482783)

  • 1. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth.
    von Stockar U; Liu J
    Biochim Biophys Acta; 1999 Aug; 1412(3):191-211. PubMed ID: 10482783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri.
    Liu JS; Marison IW; von Stockar U
    Biotechnol Bioeng; 2001 Oct; 75(2):170-80. PubMed ID: 11536139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reevaluation of the thermodynamics of growth of Saccharomyces cerevisiae on glucose, ethanol, and acetic acid.
    Battley EH
    Can J Microbiol; 1995; 41(4-5):388-98. PubMed ID: 8590415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic analysis of growth of methanobacterium thermoautotrophicum.
    Schill NA; Liu JS; Stockar Uv
    Biotechnol Bioeng; 1999 Jul; 64(1):74-81. PubMed ID: 10397841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms.
    Heijnen JJ; Van Dijken JP
    Biotechnol Bioeng; 1992 Apr; 39(8):833-58. PubMed ID: 18601018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic scaling in microbial growth.
    Calabrese S; Chakrawal A; Manzoni S; Van Cappellen P
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34799445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of the thermodynamics of microbial growth using Saccharomyces cerevisiae and a different free energy equation.
    Battley EH
    Q Rev Biol; 2013 Jun; 88(2):69-96. PubMed ID: 23909225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of microbial growth and metabolism: an analysis of the current situation.
    von Stockar U; Maskow T; Liu J; Marison IW; Patiño R
    J Biotechnol; 2006 Feb; 121(4):517-33. PubMed ID: 16185782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of organisms in the context of dynamic energy budget theory.
    Sousa T; Mota R; Domingos T; Kooijman SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051901. PubMed ID: 17279933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species.
    Popovic M
    Heliyon; 2019 Jun; 5(6):e01950. PubMed ID: 31286084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic measures of cancer: Gibbs free energy and entropy of protein-protein interactions.
    Rietman EA; Platig J; Tuszynski JA; Lakka Klement G
    J Biol Phys; 2016 Jun; 42(3):339-50. PubMed ID: 27012959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium thermodynamics. II. Application to inhomogeneous systems.
    Gujrati PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041128. PubMed ID: 22680440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
    Teh KY; Lutz AE
    J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New thermodynamic entropy calculation based approach towards quantifying the impact of eutrophication on water environment.
    Luo L; Duan N; Wang XC; Guo W; Ngo HH
    Sci Total Environ; 2017 Dec; 603-604():86-93. PubMed ID: 28623794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosystem I, when excited in the chlorophyll Q
    Jennings RC; Belgio E; Zucchelli G
    Biophys Chem; 2018 Feb; 233():36-46. PubMed ID: 29287184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternate method of calculating the free-energy change accompanying the growth of saccharomyces cerevisiae (Hansen) on three substrates.
    Battley EH
    Biotechnol Bioeng; 1979 Nov; 21(11):1929-61. PubMed ID: 385077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of microbial consortia: Enthalpies and Gibbs energies of microorganism live matter and macromolecules of E. coli, G. oxydans, P. fluorescens, S. thermophilus and P. chrysogenum.
    Popovic M; Šekularac G; Stevanović M
    J Biotechnol; 2024 Jan; 379():6-17. PubMed ID: 37949121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic analysis of microbial growth experiments.
    Smith JN; Shock EL
    Astrobiology; 2007 Dec; 7(6):891-904. PubMed ID: 18163869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new thermodynamically based correlation of chemotrophic biomass yields.
    Heijnen JJ
    Antonie Van Leeuwenhoek; 1991; 60(3-4):235-56. PubMed ID: 1807196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.