BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 10483527)

  • 1. MCDOCK: a Monte Carlo simulation approach to the molecular docking problem.
    Liu M; Wang S
    J Comput Aided Mol Des; 1999 Sep; 13(5):435-51. PubMed ID: 10483527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1997 Jul; 11(4):333-44. PubMed ID: 9334900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of binding of high-affinity ligands to protein kinase C: prediction of the binding modes through a new molecular dynamics method and evaluation by site-directed mutagenesis.
    Pak Y; Enyedy IJ; Varady J; Kung JW; Lorenzo PS; Blumberg PM; Wang S
    J Med Chem; 2001 May; 44(11):1690-701. PubMed ID: 11356104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A QXP-based multistep docking procedure for accurate prediction of protein-ligand complexes.
    Alisaraie L; Haller LA; Fels G
    J Chem Inf Model; 2006; 46(3):1174-87. PubMed ID: 16711737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-induced conformational changes: improved predictions of ligand binding conformations and affinities.
    Frimurer TM; Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biophys J; 2003 Apr; 84(4):2273-81. PubMed ID: 12668436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode transitions in all-atom Monte Carlo simulations.
    Rohs R; Bloch I; Sklenar H; Shakked Z
    Nucleic Acids Res; 2005; 33(22):7048-57. PubMed ID: 16352865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking flexible ligands to macromolecular receptors by molecular shape.
    DesJarlais RL; Sheridan RP; Dixon JS; Kuntz ID; Venkataraghavan R
    J Med Chem; 1986 Nov; 29(11):2149-53. PubMed ID: 3783576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors.
    Nguyen ED; Norn C; Frimurer TM; Meiler J
    PLoS One; 2013; 8(7):e67302. PubMed ID: 23844000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Middle-way flexible docking: Pose prediction using mixed-resolution Monte Carlo in estrogen receptor α.
    Spiriti J; Subramanian SR; Palli R; Wu M; Zuckerman DM
    PLoS One; 2019; 14(4):e0215694. PubMed ID: 31013302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RosettaLigand docking with full ligand and receptor flexibility.
    Davis IW; Baker D
    J Mol Biol; 2009 Jan; 385(2):381-92. PubMed ID: 19041878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo on the manifold and MD refinement for binding pose prediction of protein-ligand complexes: 2017 D3R Grand Challenge.
    Ignatov M; Liu C; Alekseenko A; Sun Z; Padhorny D; Kotelnikov S; Kazennov A; Grebenkin I; Kholodov Y; Kolosvari I; Perez A; Dill K; Kozakov D
    J Comput Aided Mol Des; 2019 Jan; 33(1):119-127. PubMed ID: 30421350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo replica-exchange based ensemble docking of protein conformations.
    Zhang Z; Ehmann U; Zacharias M
    Proteins; 2017 May; 85(5):924-937. PubMed ID: 28168752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.
    Wang H; Liu H; Cai L; Wang C; Lv Q
    BMC Bioinformatics; 2017 Jul; 18(1):327. PubMed ID: 28693470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2018 Jan; 32(1):187-198. PubMed ID: 28887659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteroligation of a mouse monoclonal IgE antibody (La2) with small molecules, analysed by computer-aided automated docking.
    Sotriffer CA; Liedl KR; Winger RH; Gamper AM; Kroemer RT; Linthicum DS; Rode BM; Varga JM
    Mol Immunol; 1996 Feb; 33(2):129-44. PubMed ID: 8649435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing a flexible-receptor docking algorithm in a model binding site.
    Wei BQ; Weaver LH; Ferrari AM; Matthews BW; Shoichet BK
    J Mol Biol; 2004 Apr; 337(5):1161-82. PubMed ID: 15046985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP.
    Zacharias M
    Proteins; 2004 Mar; 54(4):759-67. PubMed ID: 14997571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.