BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10483710)

  • 1. Volume stabilization in human erythrocytes: combined effects of Ca2+-dependent potassium channels and adenylate metabolism.
    Martinov MV; Vitvitsky VM; Ataullakhanov FI
    Biophys Chem; 1999 Aug; 80(3):199-215. PubMed ID: 10483710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible role of adenylate metabolism in human erythrocytes. 2. Adenylate metabolism is able to improve the erythrocyte volume stabilization.
    Ataullakhanov FI; Komarova SV; Martynov MV; Vitvitsky VM
    J Theor Biol; 1996 Dec; 183(3):307-16. PubMed ID: 9015452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lipid matrix and cytoskeleton proteins on Ca2+-activated K+ channels in erythrocytes of alcoholic and II type diabetes mellitus patients.
    Prokop'eva VD; Petrova IV; Sitozhevskii AV; Kremeno SV; Koryukin VI; Baskakov MB; Bokhan NA; Novitskii VV
    Bull Exp Biol Med; 2002 Oct; 134(4):345-8. PubMed ID: 12533755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Regulation of human erythrocyte volume. The role of calcium channels activated by calcium].
    Ataullakhanov FI; Vitvitskiy VM; Kiiatkin AB; Pichugin AV
    Biofizika; 1993; 38(5):809-21. PubMed ID: 8241312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A possible role of adenylate metabolism in human erythrocytes: simple mathematical model.
    Ataullakhanov FI; Komarova SV; Vitvitsky VM
    J Theor Biol; 1996 Mar; 179(1):75-86. PubMed ID: 8733433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of the adenylate energy charge in erythrocytes of rats and humans at high altitude hypoxia.
    Yoshino M; Yamamoto C; Murakami K; Katsumata Y; Mori S
    Comp Biochem Physiol A Comp Physiol; 1992; 101(1):65-8. PubMed ID: 1347733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of two transmembrane ion gradients for human erythrocyte volume stabilization.
    Ataullakhanov FI; Martinov MV; Shi Q; Vitvitsky VM
    PLoS One; 2022; 17(12):e0272675. PubMed ID: 36542609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased erythrocyte content of Ca2+ in patients with Tarui's disease.
    Waldenström A; Engström I; Ronquist G
    J Intern Med; 2001 Jan; 249(1):97-102. PubMed ID: 11168789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive Ca(2+) transport and Ca(2+)-dependent K(+) transport in Plasmodium falciparum-infected red cells.
    Staines HM; Chang W; Ellory JC; Tiffert T; Kirk K; Lew VL
    J Membr Biol; 1999 Nov; 172(1):13-24. PubMed ID: 10552010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All or none cell responses of Ca2+-dependent K channels elicited by calcium or lead in human red cells can be explained by heterogeneity of agonist distribution.
    Alvarez J; García-Sancho J; Herreros B
    J Membr Biol; 1988 Sep; 104(2):129-38. PubMed ID: 3193453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume-dependent regulation of Ca2+-activated potassium channels in erythrocytes from healthy donors and patients with type II diabetes mellitus aggravated by arterial hypertension.
    Kremeno SV; Petrova IV; Sitozhevskii AV; Prokop'eva VD; Kovalenko NS; Novitskii VV
    Bull Exp Biol Med; 2004 Jan; 137(1):24-6. PubMed ID: 15085237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of glycolysis on the metabolism of adenylates in human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Pomazanov VV
    Biokhimiia; 1984 Jan; 49(1):104-10. PubMed ID: 6704444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of a Ca(2+)-activated K+ channel in human erythrocytes by mechanical stress.
    Johnson RM; Tang K
    Biochim Biophys Acta; 1992 Jun; 1107(2):314-8. PubMed ID: 1504074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alzheimer amyloid beta-peptides exhibit ionophore-like properties in human erythrocytes.
    Engström I; Ronquist G; Pettersson L; Waldenström A
    Eur J Clin Invest; 1995 Jul; 25(7):471-6. PubMed ID: 7556364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation channels, cell volume and the death of an erythrocyte.
    Lang F; Lang KS; Wieder T; Myssina S; Birka C; Lang PA; Kaiser S; Kempe D; Duranton C; Huber SM
    Pflugers Arch; 2003 Nov; 447(2):121-5. PubMed ID: 12905029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of potassium channels in erythrocytes of marine teleost Scorpaena porcus.
    Silkin YA; Silkina EN; Sherstobitov AO; Gusev GP
    Membr Cell Biol; 2001; 14(6):773-82. PubMed ID: 11817573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.