BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10483867)

  • 1. Mechanisms of immune regulation in Alzheimer's disease: a viewpoint.
    Marx F; Blasko I; Grubeck-Loebenstein B
    Arch Immunol Ther Exp (Warsz); 1999; 47(4):205-9. PubMed ID: 10483867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The possible role of the immune system in Alzheimer's disease.
    Marx F; Blasko I; Pavelka M; Grubeck-Loebenstein B
    Exp Gerontol; 1998; 33(7-8):871-81. PubMed ID: 9951630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid beta-peptide.
    Townsend KP; Town T; Mori T; Lue LF; Shytle D; Sanberg PR; Morgan D; Fernandez F; Flavell RA; Tan J
    Eur J Immunol; 2005 Mar; 35(3):901-10. PubMed ID: 15688347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Alzheimer's disease immune therapy mechanisms: interactions of human postmortem microglia with antibody-opsonized amyloid beta peptide.
    Lue LF; Walker DG
    J Neurosci Res; 2002 Nov; 70(4):599-610. PubMed ID: 12404514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro.
    Veerhuis R; Van Breemen MJ; Hoozemans JM; Morbin M; Ouladhadj J; Tagliavini F; Eikelenboom P
    Acta Neuropathol; 2003 Feb; 105(2):135-44. PubMed ID: 12536224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ibuprofen decreases cytokine-induced amyloid beta production in neuronal cells.
    Blasko I; Apochal A; Boeck G; Hartmann T; Grubeck-Loebenstein B; Ransmayr G
    Neurobiol Dis; 2001 Dec; 8(6):1094-101. PubMed ID: 11741404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease.
    Weiner HL; Lemere CA; Maron R; Spooner ET; Grenfell TJ; Mori C; Issazadeh S; Hancock WW; Selkoe DJ
    Ann Neurol; 2000 Oct; 48(4):567-79. PubMed ID: 11026440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications.
    El Khoury J; Luster AD
    Trends Pharmacol Sci; 2008 Dec; 29(12):626-32. PubMed ID: 18835047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes.
    Blasko I; Stampfer-Kountchev M; Robatscher P; Veerhuis R; Eikelenboom P; Grubeck-Loebenstein B
    Aging Cell; 2004 Aug; 3(4):169-76. PubMed ID: 15268750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alzheimer's disease pathogenesis and therapeutic interventions.
    Parihar MS; Hemnani T
    J Clin Neurosci; 2004 Jun; 11(5):456-67. PubMed ID: 15177383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of inflammation in Alzheimer's disease.
    Tuppo EE; Arias HR
    Int J Biochem Cell Biol; 2005 Feb; 37(2):289-305. PubMed ID: 15474976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunity and neuronal repair in the progression of Alzheimer's disease: a brief overview.
    Baron R; Harpaz I; Nemirovsky A; Cohen H; Monsonego A
    Exp Gerontol; 2007; 42(1-2):64-9. PubMed ID: 17074458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder?
    Rogers J; Mastroeni D; Leonard B; Joyce J; Grover A
    Int Rev Neurobiol; 2007; 82():235-46. PubMed ID: 17678964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease.
    Abdul HM; Calabrese V; Calvani M; Butterfield DA
    J Neurosci Res; 2006 Aug; 84(2):398-408. PubMed ID: 16634066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of scavenger receptor SRCL in the clearance of amyloid-beta in Alzheimer's disease.
    Nakamura K; Ohya W; Funakoshi H; Sakaguchi G; Kato A; Takeda M; Kudo T; Nakamura T
    J Neurosci Res; 2006 Sep; 84(4):874-90. PubMed ID: 16868960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid-beta aggregation.
    Finder VH; Glockshuber R
    Neurodegener Dis; 2007; 4(1):13-27. PubMed ID: 17429215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraneuronal Abeta accumulation and origin of plaques in Alzheimer's disease.
    Gouras GK; Almeida CG; Takahashi RH
    Neurobiol Aging; 2005 Oct; 26(9):1235-44. PubMed ID: 16023263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel 'inflammatory plaque' pathology in presenilin-1 Alzheimer's disease.
    Shepherd CE; Gregory GC; Vickers JC; Halliday GM
    Neuropathol Appl Neurobiol; 2005 Oct; 31(5):503-11. PubMed ID: 16150121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide.
    Liu Y; Walter S; Stagi M; Cherny D; Letiembre M; Schulz-Schaeffer W; Heine H; Penke B; Neumann H; Fassbender K
    Brain; 2005 Aug; 128(Pt 8):1778-89. PubMed ID: 15857927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukins, inflammation, and mechanisms of Alzheimer's disease.
    Weisman D; Hakimian E; Ho GJ
    Vitam Horm; 2006; 74():505-30. PubMed ID: 17027528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.