BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10484289)

  • 1. Simulated weightlessness-induced attenuation of testosterone production may be responsible for bone loss.
    Wimalawansa SM; Wimalawansa SJ
    Endocrine; 1999 Jun; 10(3):253-60. PubMed ID: 10484289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel pharmacological approach of musculoskeletal losses associated with simulated microgravity.
    Wimalawansa SM; Wimalawansa SJ
    J Musculoskelet Neuronal Interact; 2000 Sep; 1(1):35-41. PubMed ID: 15758523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Different Types of Low-frequency Electromagnetic Fields Resist Bone Loss Caused by Weightlessness].
    Li WY; Tian YH; Gao YH; Zhu BY; Xi HR; Chen KM
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2019 Feb; 41(1):11-20. PubMed ID: 30837037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of weightlessness-induced musculoskeletal losses with androgens: quantification by MRI.
    Wimalawansa SM; Chapa MT; Wei JN; Westlund KN; Quast MJ; Wimalawansa SJ
    J Appl Physiol (1985); 1999 Jun; 86(6):1841-6. PubMed ID: 10368347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interventions to prevent bone loss in astronauts during space flight.
    Iwamoto J; Takeda T; Sato Y
    Keio J Med; 2005 Jun; 54(2):55-9. PubMed ID: 16077253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic role of hydroxyapatite nanoparticles and pulsed electromagnetic field therapy to prevent bone loss in rats following exposure to simulated microgravity.
    Prakash D; Behari J
    Int J Nanomedicine; 2009; 4():133-44. PubMed ID: 19774112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression.
    Xin M; Yang Y; Zhang D; Wang J; Chen S; Zhou D
    Osteoporos Int; 2015 Nov; 26(11):2665-76. PubMed ID: 25963235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AQP9: a novel target for bone loss induced by microgravity.
    Bu G; Shuang F; Wu Y; Ren D; Hou S
    Biochem Biophys Res Commun; 2012 Mar; 419(4):774-8. PubMed ID: 22390930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of anti-osteoporotic agents on the prevention of bone loss in unloaded bone.
    Siu WS; Ko CH; Hung LK; Lau CP; Lau CB; Fung KP; Leung PC
    Mol Med Rep; 2013 Oct; 8(4):1188-94. PubMed ID: 23970373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degenerative Tissue Responses to Space-like Radiation Doses in a Rodent Model of Simulated Microgravity.
    Chowdhury P; Akel N; Jamshidi-Parsian A; Gaddy D; Griffin RJ; Yadlapalli JS; Dobretsov M
    Ann Clin Lab Sci; 2016; 46(2):190-7. PubMed ID: 27098627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated weightlessness in rats.
    Qiong W; Yong-Liang Z; Ying-Hui L; Shan-Guang C; Jiang-Hui G; Yi-Xi C; Ning J; Xin-Min L
    J Ethnopharmacol; 2016 Jul; 187():9-16. PubMed ID: 27103112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of disuse osteoporosis in rats by Cordyceps sinensis extract.
    Qi W; Yan YB; Lei W; Wu ZX; Zhang Y; Liu D; Shi L; Cao PC; Liu N
    Osteoporos Int; 2012 Sep; 23(9):2347-57. PubMed ID: 22159671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents.
    Vasques M; Lang C; Grindeland RE; Roy RR; Daunton N; Bigbee AJ; Wade CE
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A2-8. PubMed ID: 10776445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes of femur minerals and serum BGP in hindlimb unloaded rats during convalescence].
    Wan YM; Zhang MF; Cui W; Song JP
    Space Med Med Eng (Beijing); 2000 Aug; 13(4):298-300. PubMed ID: 11892752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
    Morey-Holton ER; Globus RK
    Bone; 1998 May; 22(5 Suppl):83S-88S. PubMed ID: 9600759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.
    Niu Y; Li C; Pan Y; Li Y; Kong X; Wang S; Zhai Y; Wu X; Fan W; Mei Q
    Pharm Biol; 2015 Jan; 53(1):110-6. PubMed ID: 25243871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of traditional Chinese medicine intervention on the bone growth and metabolism of rats with simulated weightlessness.
    Zhu J
    Asian Pac J Trop Med; 2013 Mar; 6(3):224-7. PubMed ID: 23375038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential skeletal responses of hindlimb unloaded rats on a vitamin D-deficient diet to 1,25-dihydroxyvitamin D3 and its analog, seocalcitol (EB1089).
    Narayanan R; Allen MR; Gaddy D; Bloomfield SA; Smith CL; Weigel NL
    Bone; 2004 Jul; 35(1):134-43. PubMed ID: 15207749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex steroids, biochemical markers, bone mineral density and histomorphometry in male osteoporosis patients.
    Fassbender WJ; Balli M; Görtz B; Hinrichs B; Kaiser HE; Tracke HS
    In Vivo; 2000; 14(5):611-8. PubMed ID: 11125545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb-suspended rats by activating sAC/cAMP/PKA/CREB signaling pathway.
    Li WY; Li XY; Tian YH; Chen XR; Zhou J; Zhu BY; Xi HR; Gao YH; Xian CJ; Chen KM
    Bioelectromagnetics; 2018 Dec; 39(8):569-584. PubMed ID: 30350869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.