BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 10484440)

  • 1. Increased Ca2+ sensitivity as a key mechanism of PKC-induced constriction in pressurized cerebral arteries.
    Gokina NI; Knot HJ; Nelson MT; Osol G
    Am J Physiol; 1999 Sep; 277(3):H1178-88. PubMed ID: 10484440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and protein kinase C modulate myofilament Ca2+ sensitivity in pressurized rat cerebral arteries.
    Gokina NI; Osol G
    Am J Physiol; 1998 Jun; 274(6):H1920-7. PubMed ID: 9841478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of arterial tone by smooth muscle myosin type II.
    Löhn M; Kämpf D; Gui-Xuan C; Haller H; Luft FC; Gollasch M
    Am J Physiol Cell Physiol; 2002 Nov; 283(5):C1383-9. PubMed ID: 12372799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure.
    Knot HJ; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):199-209. PubMed ID: 9490839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms mediating the myogenic response in newborn porcine cerebral arteries.
    Ahmed A; Waters CM; Leffler CW; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2004 Nov; 287(5):H2061-9. PubMed ID: 15284060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myogenic contraction by modulation of voltage-dependent calcium currents in isolated rat cerebral arteries.
    McCarron JG; Crichton CA; Langton PD; MacKenzie A; Smith GL
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):371-9. PubMed ID: 9032685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase C modulates basal myogenic tone in resistance arteries from the cerebral circulation.
    Osol G; Laher I; Cipolla M
    Circ Res; 1991 Feb; 68(2):359-67. PubMed ID: 1991343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C reduces the KCa current of rat tail artery smooth muscle cells.
    Schubert R; Noack T; Serebryakov VN
    Am J Physiol; 1999 Mar; 276(3):C648-58. PubMed ID: 10069992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 20-Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C.
    Lange A; Gebremedhin D; Narayanan J; Harder D
    J Biol Chem; 1997 Oct; 272(43):27345-52. PubMed ID: 9341185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries.
    Earley S; Waldron BJ; Brayden JE
    Circ Res; 2004 Oct; 95(9):922-9. PubMed ID: 15472118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the myogenic response in postnatal intestine: role of PKC.
    Su BY; Reber KM; Nankervis CA; Nowicki PT
    Am J Physiol Gastrointest Liver Physiol; 2003 Mar; 284(3):G445-52. PubMed ID: 12576303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation.
    Lagaud G; Gaudreault N; Moore ED; Van Breemen C; Laher I
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2187-95. PubMed ID: 12388215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin cytoskeletal modulation of pressure-induced depolarization and Ca(2+) influx in cerebral arteries.
    Gokina NI; Osol G
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1410-20. PubMed ID: 11893578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles of protein kinase C isoforms in myogenic constriction of rat posterior cerebral arteries.
    Kashihara T; Nakayama K; Ishikawa T
    J Pharmacol Sci; 2008 Dec; 108(4):446-54. PubMed ID: 19057126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histamine decreases myogenic tone in rat cerebral arteries by H2-receptor-mediated KV channel activation, independent of endothelium and cyclic AMP.
    Jarajapu YP; Oomen C; Uteshev VV; Knot HJ
    Eur J Pharmacol; 2006 Oct; 547(1-3):116-24. PubMed ID: 16920098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Rho kinase inhibition on cerebral artery myogenic tone and reactivity.
    Gokina NI; Park KM; McElroy-Yaggy K; Osol G
    J Appl Physiol (1985); 2005 May; 98(5):1940-8. PubMed ID: 15626753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel.
    Tian XY; Wong WT; Sayed N; Luo J; Tsang SY; Bian ZX; Lu Y; Cheang WS; Yao X; Chen ZY; Huang Y
    Pharmacol Res; 2012 Feb; 65(2):239-46. PubMed ID: 22133671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic vasoconstriction and intracellular Ca2+ in pulmonary arteries: evidence for PKC-independent Ca2+ sensitization.
    Robertson TP; Aaronson PI; Ward JP
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H301-7. PubMed ID: 7840276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potent vasoconstrictor actions of cyclopiazonic acid and thapsigargin on femoral arteries from spontaneously hypertensive rats.
    Nomura Y; Asano M; Ito K; Uyama Y; Imaizumi Y; Watanabe M
    Br J Pharmacol; 1997 Jan; 120(1):65-73. PubMed ID: 9117100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for protein kinase C involvement in arteriolar myogenic reactivity.
    Hill MA; Falcone JC; Meininger GA
    Am J Physiol; 1990 Nov; 259(5 Pt 2):H1586-94. PubMed ID: 2240255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.