These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10484444)

  • 1. Transport of fluid and solutes in the body I. Formulation of a mathematical model.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Am J Physiol; 1999 Sep; 277(3):H1215-27. PubMed ID: 10484444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of fluid and solutes in the body II. Model validation and implications.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Am J Physiol; 1999 Sep; 277(3):H1228-40. PubMed ID: 10484445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of fluid and solute exchange in the human: validation and implications.
    Bert JL; Gyenge CC; Bowen BD; Reed RK; Lund T
    Acta Physiol Scand; 2000 Nov; 170(3):201-9. PubMed ID: 11167305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary model of fluid and solute distribution and transport during hemorrhage.
    Gyenge CC; Bowen BD; Reed RK; Bert JL
    Ann Biomed Eng; 2003; 31(7):823-39. PubMed ID: 12971615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of whole-body capillary transport parameters from osmotic transient data.
    Wolf MB
    Am J Physiol; 1982 Mar; 242(3):R227-36. PubMed ID: 7065216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of extravascular protein in capillary-tissue fluid exchange.
    Salathé EP; Venkataraman R
    Am J Physiol; 1978 Jan; 234(1):H52-8. PubMed ID: 623274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Description of dynamic lung fluid transport phenomena by linear non-equilibrium thermodynamic equations.
    Rosenthal VV; Serikov VB; Belyakov NA; Symbirtsev SA
    J Biomed Eng; 1990 Jan; 12(1):46-50. PubMed ID: 2296169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between pore model predictions and sheep lung fluid and protein transport.
    Roselli RJ; Parker RE; Harris TR
    Microvasc Res; 1985 May; 29(3):320-39. PubMed ID: 3999990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of body fluids: local mechanisms guarding interstitial fluid volume.
    Aukland K
    J Physiol (Paris); 1984; 79(6):395-400. PubMed ID: 6399307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients.
    Pietribiasi M; Waniewski J; Załuska A; Załuska W; Lindholm B
    PLoS One; 2016; 11(8):e0159748. PubMed ID: 27483369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular exchange and interstitial volume regulation in the rat: implications of the model.
    Reed RK; Bowen BD; Bert JL
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H2081-91. PubMed ID: 2603991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling transient exchange in mesentery.
    Taylor DG; Bert JL; Bowen BD
    Microvasc Res; 1992 May; 43(3):308-33. PubMed ID: 1635475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transvascular exchange of fluid and plasma proteins.
    Papenfuss HD; Gross JF
    Biorheology; 1987; 24(3):319-35. PubMed ID: 3663893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport parameter estimation from lymph measurements and the Patlak equation.
    Watson PD; Wolf MB
    Am J Physiol; 1992 Jan; 262(1 Pt 2):H293-8. PubMed ID: 1301007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmental modeling of skin transport.
    Amarah AA; Petlin DG; Grice JE; Hadgraft J; Roberts MS; Anissimov YG
    Eur J Pharm Biopharm; 2018 Sep; 130():336-344. PubMed ID: 30031091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of fluid, erythrocyte, and solute transport in the lung.
    Roselli RJ; Tack G; Harris TR
    Ann Biomed Eng; 1997; 25(1):46-61. PubMed ID: 9124737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
    Layton AT; Layton HE
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1346-66. PubMed ID: 15914776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of interstitial transport. I. Theory.
    Taylor DG; Bert JL; Bowen BD
    Microvasc Res; 1990 May; 39(3):253-78. PubMed ID: 2194091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of K transport in a mathematical model of the cortical collecting tubule.
    Strieter J; Weinstein AM; Giebisch G; Stephenson JL
    Am J Physiol; 1992 Dec; 263(6 Pt 2):F1076-86. PubMed ID: 1481884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of blood-interstitial acid-base balance: application to dilution acidosis and acid-base status.
    Wolf MB; Deland EC
    J Appl Physiol (1985); 2011 Apr; 110(4):988-1002. PubMed ID: 21212243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.