BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10484592)

  • 1. Endothelin-1 sensitivity of porcine coronary arteries is reduced by exercise training and is gender dependent.
    Jones AW; Rubin LJ; Magliola L
    J Appl Physiol (1985); 1999 Sep; 87(3):1172-7. PubMed ID: 10484592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of sex, high-fat diet, and exercise training on potassium currents of swine coronary smooth muscle.
    Yang Y; Jones AW; Thomas TR; Rubin LJ
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1553-63. PubMed ID: 17526655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise training increases K+-channel contribution to regulation of coronary arterial tone.
    Bowles DK; Laughlin MH; Sturek M
    J Appl Physiol (1985); 1998 Apr; 84(4):1225-33. PubMed ID: 9516188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perivascular fat alters reactivity of coronary artery: effects of diet and exercise.
    Reifenberger MS; Turk JR; Newcomer SC; Booth FW; Laughlin MH
    Med Sci Sports Exerc; 2007 Dec; 39(12):2125-34. PubMed ID: 18046183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gender influences coronary L-type Ca(2+) current and adaptation to exercise training in miniature swine.
    Bowles DK
    J Appl Physiol (1985); 2001 Dec; 91(6):2503-10. PubMed ID: 11717211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exercise training and hypercholesterolemia on adenosine activation of voltage-dependent K+ channels in coronary arterioles.
    Heaps CL; Jeffery EC; Laine GA; Price EM; Bowles DK
    J Appl Physiol (1985); 2008 Dec; 105(6):1761-71. PubMed ID: 18832757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ sensitization and PKC contribute to exercise training-enhanced contractility in porcine collateral-dependent coronary arteries.
    Robles JC; Sturek M; Parker JL; Heaps CL
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1201-9. PubMed ID: 21297028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasoconstrictor responses of coronary resistance arteries in exercise-trained pigs.
    Laughlin MH; Muller JM
    J Appl Physiol (1985); 1998 Mar; 84(3):884-9. PubMed ID: 9480947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of exercise training on responses of peripheral and visceral arteries in swine.
    McAllister RM; Kimani JK; Webster JL; Parker JL; Laughlin MH
    J Appl Physiol (1985); 1996 Jan; 80(1):216-25. PubMed ID: 8847306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise training alters myogenic responses in porcine coronary resistance arteries.
    Muller JM; Myers PR; Laughlin MH
    J Appl Physiol (1985); 1993 Dec; 75(6):2677-82. PubMed ID: 8125889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise training attenuates coronary smooth muscle phenotypic modulation and nuclear Ca2+ signaling.
    Wamhoff BR; Bowles DK; Dietz NJ; Hu Q; Sturek M
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2397-410. PubMed ID: 12388302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelin-1 activates phospholipases and channels at similar concentrations in porcine coronary arteries.
    Jones AW; Magliola L; Waters CB; Rubin LJ
    Am J Physiol; 1998 Jun; 274(6):C1583-91. PubMed ID: 9611123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca²⁺-sensitive K⁺ current in miniature swine with LV hypertrophy.
    Emter CA; Tharp DL; Ivey JR; Ganjam VK; Bowles DK
    Am J Physiol Heart Circ Physiol; 2011 Oct; 301(4):H1687-94. PubMed ID: 21841018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training alters the Ca2+ and contractile responses of coronary arteries to endothelin.
    Bowles DK; Laughlin MH; Sturek M
    J Appl Physiol (1985); 1995 Mar; 78(3):1079-87. PubMed ID: 7775301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of gender and exercise training: vasomotor reactivity of porcine skeletal muscle arteries.
    Laughlin MH; Schrage WG; McAllister RM; Garverick HA; Jones AW
    J Appl Physiol (1985); 2001 Jan; 90(1):216-27. PubMed ID: 11133913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of exercise training on vasomotor reactivity of porcine coronary arteries.
    Oltman CL; Parker JL; Adams HR; Laughlin MH
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H372-82. PubMed ID: 1510134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered calcium sensitivity contributes to enhanced contractility of collateral-dependent coronary arteries.
    Heaps CL; Parker JL; Sturek M; Bowles DK
    J Appl Physiol (1985); 2004 Jul; 97(1):310-6. PubMed ID: 14978011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise training increases L-type calcium current density in coronary smooth muscle.
    Bowles DK; Hu Q; Laughlin MH; Sturek M
    Am J Physiol; 1998 Dec; 275(6):H2159-69. PubMed ID: 9843816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of exercise training on regulation of tone in coronary arteries and arterioles.
    Parker JL; Oltman CL; Muller JM; Myers PR; Adams HR; Laughlin MH
    Med Sci Sports Exerc; 1994 Oct; 26(10):1252-61. PubMed ID: 7799768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced KCl-mediated contractility and Ca
    Heaps CL; Bray JF; Parker JL
    Am J Physiol Heart Circ Physiol; 2020 Oct; 319(4):H915-H926. PubMed ID: 32857599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.