BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10484992)

  • 1. Clonality determined by fluorescence in situ hybridization of single-cell aberrations in hematopoietic neoplasias.
    Gebhart T; Liehr T
    Cancer Genet Cytogenet; 1999 Sep; 113(2):193-4. PubMed ID: 10484992
    [No Abstract]   [Full Text] [Related]  

  • 2. Detection of numerical aberrations in hematologic neoplasias by fluorescence in situ hybridization.
    Cuneo A; Bigoni R; Roberti MG; Bardi A; Balsamo R; Piva N; Castoldi G
    Haematologica; 1997; 82(1):85-90. PubMed ID: 9107092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of i(17q) in metaphase and interphase of malignant hematopoietic cells by fluorescence in situ hybridization.
    Shi G; Weh HJ; Hossfeld DK
    Cancer Genet Cytogenet; 1994 Mar; 73(1):17-22. PubMed ID: 8174070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination by interphase-FISH of the clonality of aberrant karyotypes in human hematopoietic neoplasias.
    Gebhart E; Liehr T; Harrer P; Reichardt S; Schmitt G; Thoma K; Gramatzki M; Trautmann U
    Leuk Lymphoma; 1995 Apr; 17(3-4):295-302. PubMed ID: 8580799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Detection of abnormal numbers of chromosome 8 with interphase fluorescence in situ hybridization in hematologic malignancies].
    Wang HP; Li GX; Qiao ZH; Wang HW
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2004 Aug; 21(4):395-7. PubMed ID: 15300644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid detection of karyotype changes in interphase bone marrow cells by oligonucleotide primed in situ hybridization (PRINS).
    Wilkens L; Komminoth P; Nasarek A; von Wasielewski R; Werner M
    J Pathol; 1997 Apr; 181(4):368-73. PubMed ID: 9196432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrepant Cytogenetic and Interphase Fluorescence In Situ Hybridization (I-FISH) Results from Bone Marrow Specimens of Patients with Hematologic Neoplasms.
    Cantú ES; Dong H; Forsyth DR; Espinoza FP; Papenhausen PR
    Ann Clin Lab Sci; 2018 May; 48(3):264-272. PubMed ID: 29970427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Applications of fluorescence in situ hybridization in the study of hematologic neoplasms].
    Hernández JM; Tabernero MD; García JL
    Sangre (Barc); 1996 Aug; 41(4):305-9. PubMed ID: 8984672
    [No Abstract]   [Full Text] [Related]  

  • 9. [In situ hybridization techniques. Basis and applications in hematologic neoplasias].
    Espinet B; Lloveras E; Solé F
    Sangre (Barc); 1999 Aug; 44(4):261-7. PubMed ID: 10589277
    [No Abstract]   [Full Text] [Related]  

  • 10. Fluorescence in situ hybridization in leukemias: 'the FISH are spawning!'.
    Bentz M; Döhner H; Cabot G; Lichter P
    Leukemia; 1994 Sep; 8(9):1447-52. PubMed ID: 8090024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cytogenetic study of 121 patients suffering from various hematologic neoplasms using the in situ hybridization technique].
    Pérez Losada A; Solé F; Woessner S; Florensa L; Besses C; Espinet B; Caballín MR; García Eroles L; Sans-Sabrafén J
    Sangre (Barc); 1996 Jun; 41(3):201-9. PubMed ID: 8755208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal heterogeneity of aneuploid leukemic cell populations detected by conventional karyotyping and by fluorescence in situ hybridization (FISH).
    Gebhart E; Trautmann U; Reichardt S; Liehr T
    Anticancer Res; 1993; 13(5C):1857-62. PubMed ID: 8267393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The monosomy 7 clone in interphase and metaphase cell population: a combined chromosome and primed in situ labeling study.
    Pedersen B; Koch J; Bendix Hansen K; Hindkjaer J; Lindbjerg Andersen C
    Acta Haematol; 1997; 97(4):216-21. PubMed ID: 9158664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytogenetic and fluorescence in situ hybridization analyses of hematologic malignancies in Korea.
    Koo SH; Kwon GC; Chun HJ; Park JW
    Cancer Genet Cytogenet; 1998 Feb; 101(1):1-6. PubMed ID: 9460492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new case of isolated tetrasomy of chromosome 8 in a patient with therapy-related myelodysplastic syndrome: confirmation by chromosome painting in metaphase and interphase nuclei.
    Flactif M; Lai JL; Deminatti MM
    Cancer Genet Cytogenet; 1993 Feb; 65(2):175-6. PubMed ID: 8453606
    [No Abstract]   [Full Text] [Related]  

  • 16. Split-signal FISH for detection of chromosome aberrations.
    van Dongen JJ; van der Burg M; Langerak AW
    Hematology; 2005; 10 Suppl 1():66-72. PubMed ID: 16188640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence in situ hybridization and cytogenetics of hemopoietic malignancies: new developments.
    Cherif D; Berger R
    Nouv Rev Fr Hematol (1978); 1993 Feb; 35(1):45-7. PubMed ID: 8511041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrasomy 8 in a patient with acute nonlymphocytic leukemia: a metaphase and interphase study with fluorescence in situ hybridization.
    Mühlematter D; Castagné C; Bruzzese O; Clément F; Schmidt PM; Bellomo MJ
    Cancer Genet Cytogenet; 1996 Jul; 89(1):44-8. PubMed ID: 8689609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interphase fluorescence in situ hybridization overcomes pitfalls of G-banding analysis with special reference to underestimation of chromosomal aberration rates.
    Tanaka K; Arif M; Eguchi M; Shintani T; Kumaravel TS; Asaoku H; Kyo T; Dohy H; Kamada N
    Cancer Genet Cytogenet; 1999 Nov; 115(1):32-8. PubMed ID: 10565297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Chromosomal analysis, fluorescence in situ hybridization method, and spectral karyotyping in hematologic malignancies].
    Nara N
    Rinsho Byori; 2003 Jun; Suppl 126():124-30. PubMed ID: 12905952
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.