These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 10485842)

  • 41. Interplay of DNA repair, homologous recombination, and DNA polymerases in resistance to the DNA damaging agent 4-nitroquinoline-1-oxide in Escherichia coli.
    Williams AB; Hetrick KM; Foster PL
    DNA Repair (Amst); 2010 Oct; 9(10):1090-7. PubMed ID: 20724226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo.
    Pagès V; Fuchs RP
    Science; 2003 May; 300(5623):1300-3. PubMed ID: 12764199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of the RE V3 gene in the methylated base-excision repair system. Co-operation of two DNA polymerases, delta and Rev3p, in the repair of MMS-induced lesions in the DNA of Saccharomyces cerevisiae.
    Halas A; Baranowska H; Policińska Z; Jachymczyk WJ
    Curr Genet; 1997 Apr; 31(4):292-301. PubMed ID: 9108136
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Translesion DNA polymerases].
    Yamada A; Masutani C; Hanaoka F
    Seikagaku; 2000 Mar; 72(3):187-90. PubMed ID: 10793580
    [No Abstract]   [Full Text] [Related]  

  • 45. Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
    Torres-Ramos CA; Prakash S; Prakash L
    Mol Cell Biol; 2002 Apr; 22(7):2419-26. PubMed ID: 11884624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of accessory proteins on the fidelity of DNA synthesis by eukaryotic replicative polymerases.
    Roberts JD; Hamatake RK; Fitzgerald MS; Sugino A; Kunkel TA
    Prog Clin Biol Res; 1990; 340A():91-100. PubMed ID: 2167484
    [No Abstract]   [Full Text] [Related]  

  • 47. Deoxycytidyl transferase activity of yeast REV1 protein.
    Nelson JR; Lawrence CW; Hinkle DC
    Nature; 1996 Aug; 382(6593):729-31. PubMed ID: 8751446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of Escherichia coli translesion synthesis polymerases and their accessory factors.
    Beuning PJ; Simon SM; Godoy VG; Jarosz DF; Walker GC
    Methods Enzymol; 2006; 408():318-40. PubMed ID: 16793378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae.
    Scott AD; Neishabury M; Jones DH; Reed SH; Boiteux S; Waters R
    Yeast; 1999 Feb; 15(3):205-18. PubMed ID: 10077187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rad5 Recruits Error-Prone DNA Polymerases for Mutagenic Repair of ssDNA Gaps on Undamaged Templates.
    Gallo D; Kim T; Szakal B; Saayman X; Narula A; Park Y; Branzei D; Zhang Z; Brown GW
    Mol Cell; 2019 Mar; 73(5):900-914.e9. PubMed ID: 30733119
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comprehensive comparison of DNA replication past 2-deoxyribose and its tetrahydrofuran analog in Escherichia coli.
    Kroeger KM; Goodman MF; Greenberg MM
    Nucleic Acids Res; 2004; 32(18):5480-5. PubMed ID: 15477395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function.
    Johnson RE; Prakash S; Prakash L
    J Biol Chem; 1999 Jun; 274(23):15975-7. PubMed ID: 10347143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ATPase switches controlling DNA replication initiation.
    Lee DG; Bell SP
    Curr Opin Cell Biol; 2000 Jun; 12(3):280-5. PubMed ID: 10801458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Translesion DNA Synthesis and Carcinogenesis.
    Shilkin ES; Boldinova EO; Stolyarenko AD; Goncharova RI; Chuprov-Netochin RN; Khairullin RF; Smal MP; Makarova AV
    Biochemistry (Mosc); 2020 Apr; 85(4):425-435. PubMed ID: 32569550
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sliding clamps: an open and shut case?
    Bloom LB; Hayner JN
    Curr Biol; 2012 Mar; 22(5):R157-60. PubMed ID: 22401895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage.
    Thrall ES; Kath JE; Chang S; Loparo JJ
    Nat Commun; 2017 Dec; 8(1):2170. PubMed ID: 29255195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyl adenine.
    Johnson RE; Yu SL; Prakash S; Prakash L
    Mol Cell Biol; 2007 Oct; 27(20):7198-205. PubMed ID: 17698580
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translesion DNA polymerases.
    Goodman MF; Woodgate R
    Cold Spring Harb Perspect Biol; 2013 Oct; 5(10):a010363. PubMed ID: 23838442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Eukaryotic Y-family polymerases bypass a 3-methyl-2'-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo.
    Plosky BS; Frank EG; Berry DA; Vennall GP; McDonald JP; Woodgate R
    Nucleic Acids Res; 2008 Apr; 36(7):2152-62. PubMed ID: 18281311
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural basis of ubiquitin recognition by translesion synthesis DNA polymerase ι.
    Cui G; Benirschke RC; Tuan HF; Juranić N; Macura S; Botuyan MV; Mer G
    Biochemistry; 2010 Nov; 49(47):10198-207. PubMed ID: 21049971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.