BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10485926)

  • 1. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels.
    Jensen BS; Odum N; Jorgensen NK; Christophersen P; Olesen SP
    Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10917-21. PubMed ID: 10485926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ca2+-activated K+ channel of intermediate conductance:a possible target for immune suppression.
    Jensen BS; Hertz M; Christophersen P; Madsen LS
    Expert Opin Ther Targets; 2002 Dec; 6(6):623-36. PubMed ID: 12472376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A charybdotoxin-insensitive conductance in human T lymphocytes: T cell membrane potential is set by distinct K+ channels.
    Verheugen JA; Korn H
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):317-31. PubMed ID: 9306275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State-dependent block of rabbit vascular smooth muscle delayed rectifier and Kv1.5 channels by inhibitors of cytochrome P450-dependent enzymes.
    Iftinca M; Waldron GJ; Triggle CR; Cole WC
    J Pharmacol Exp Ther; 2001 Aug; 298(2):718-28. PubMed ID: 11454936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments?
    Jensen BS; Strøbaek D; Olesen SP; Christophersen P
    Curr Drug Targets; 2001 Dec; 2(4):401-22. PubMed ID: 11732639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death.
    McFerrin MB; Turner KL; Cuddapah VA; Sontheimer H
    Am J Physiol Cell Physiol; 2012 Nov; 303(10):C1070-8. PubMed ID: 22992678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydropyridines inhibit acetylcholine-induced hyperpolarization in cochlear artery via blockade of intermediate-conductance calcium-activated potassium channels.
    Jiang ZG; Shi XR; Guan BC; Zhao H; Yang YQ
    J Pharmacol Exp Ther; 2007 Feb; 320(2):544-51. PubMed ID: 17082310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences.
    Ghanshani S; Wulff H; Miller MJ; Rohm H; Neben A; Gutman GA; Cahalan MD; Chandy KG
    J Biol Chem; 2000 Nov; 275(47):37137-49. PubMed ID: 10961988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Ca2+-activated K+ current by clotrimazole in rat anterior pituitary GH3 cells.
    Wu SN; Li HF; Jan CR; Shen AY
    Neuropharmacology; 1999 Jul; 38(7):979-89. PubMed ID: 10428416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells.
    Benton DC; Roxburgh CJ; Ganellin CR; Shiner MA; Jenkinson DH
    Br J Pharmacol; 1999 Jan; 126(1):169-78. PubMed ID: 10051133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology.
    Grissmer S; Nguyen AN; Cahalan MD
    J Gen Physiol; 1993 Oct; 102(4):601-30. PubMed ID: 7505804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-gated and Ca(2+)-activated K+ channels in intact human T lymphocytes. Noninvasive measurements of membrane currents, membrane potential, and intracellular calcium.
    Verheugen JA; Vijverberg HP; Oortgiesen M; Cahalan MD
    J Gen Physiol; 1995 Jun; 105(6):765-94. PubMed ID: 7561743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal regulation of K+ channels by Ca2+ in intact human T lymphocytes.
    Schlichter LC; Pahapill PA; Schumacher PA
    Recept Channels; 1993; 1(3):201-15. PubMed ID: 7922020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NPPB block of the intermediate-conductance Ca2+-activated K+ channel.
    Fioretti B; Castigli E; Calzuola I; Harper AA; Franciolini F; Catacuzzeno L
    Eur J Pharmacol; 2004 Aug; 497(1):1-6. PubMed ID: 15321728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K+ channels and the microglial respiratory burst.
    Khanna R; Roy L; Zhu X; Schlichter LC
    Am J Physiol Cell Physiol; 2001 Apr; 280(4):C796-806. PubMed ID: 11245596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage dependence of the Ca(2+)-activated K(+) channel K(Ca)3.1 in human erythroleukemia cells.
    Stoneking CJ; Shivakumar O; Thomas DN; Colledge WH; Mason MJ
    Am J Physiol Cell Physiol; 2013 May; 304(9):C858-72. PubMed ID: 23407879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and functional characterization of the intermediate-conductance Ca(2+)-activated K(+) channel (IK-1) in biliary epithelium.
    Dutta AK; Khimji AK; Sathe M; Kresge C; Parameswara V; Esser V; Rockey DC; Feranchak AP
    Am J Physiol Gastrointest Liver Physiol; 2009 Nov; 297(5):G1009-18. PubMed ID: 20501432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na(+)/K(+) ATPase on EDHF relaxations in the rat hepatic artery.
    Andersson DA; Zygmunt PM; Movahed P; Andersson TL; Högestätt ED
    Br J Pharmacol; 2000 Apr; 129(7):1490-6. PubMed ID: 10742306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel.
    Jensen BS; Strobaek D; Christophersen P; Jorgensen TD; Hansen C; Silahtaroglu A; Olesen SP; Ahring PK
    Am J Physiol; 1998 Sep; 275(3):C848-56. PubMed ID: 9730970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a Ca2+-activated K+ current in insulin-secreting murine betaTC-3 cells.
    Kozak JA; Misler S; Logothetis DE
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):355-70. PubMed ID: 9575286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.