These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 10486006)
1. Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. Brown JR; Doolittle WF J Mol Evol; 1999 Oct; 49(4):485-95. PubMed ID: 10486006 [TBL] [Abstract][Full Text] [Related]
2. Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Siatecka M; Rozek M; Barciszewski J; Mirande M Eur J Biochem; 1998 Aug; 256(1):80-7. PubMed ID: 9746349 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Lamour V; Quevillon S; Diriong S; N'Guyen VC; Lipinski M; Mirande M Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8670-4. PubMed ID: 8078941 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary insights about bacterial GlxRS from whole genome analyses: is GluRS2 a chimera? Dasgupta S; Basu G BMC Evol Biol; 2014 Feb; 14():26. PubMed ID: 24521160 [TBL] [Abstract][Full Text] [Related]
5. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase. Gagnon Y; Lacoste L; Champagne N; Lapointe J J Biol Chem; 1996 Jun; 271(25):14856-63. PubMed ID: 8662929 [TBL] [Abstract][Full Text] [Related]
6. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution. Saha R; Dasgupta S; Basu G; Roy S Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520 [TBL] [Abstract][Full Text] [Related]
7. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases. Hadd A; Perona JJ J Mol Biol; 2014 Oct; 426(21):3619-33. PubMed ID: 25149203 [TBL] [Abstract][Full Text] [Related]
8. A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution. Skouloubris S; Ribas de Pouplana L; De Reuse H; Hendrickson TL Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11297-302. PubMed ID: 13679580 [TBL] [Abstract][Full Text] [Related]
14. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nureki O; O'Donoghue P; Watanabe N; Ohmori A; Oshikane H; Araiso Y; Sheppard K; Söll D; Ishitani R Nucleic Acids Res; 2010 Nov; 38(20):7286-97. PubMed ID: 20601684 [TBL] [Abstract][Full Text] [Related]
15. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Brown JR; Doolittle WF Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2441-5. PubMed ID: 7708661 [TBL] [Abstract][Full Text] [Related]
16. Cloning and sequencing of the first plant GlnRS and GluRS genes. Siatecka M; Rozek M; Ignacak M; Barciszewski J Nucleic Acids Symp Ser; 1995; (33):160-2. PubMed ID: 8643358 [TBL] [Abstract][Full Text] [Related]
17. A functional loop spanning distant domains of glutaminyl-tRNA synthetase also stabilizes a molten globule state. Saha R; Dasgupta S; Banerjee R; Mitra-Bhattacharyya A; Söll D; Basu G; Roy S Biochemistry; 2012 Jun; 51(22):4429-37. PubMed ID: 22563625 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases. Balg C; Blais SP; Bernier S; Huot JL; Couture M; Lapointe J; Chênevert R Bioorg Med Chem; 2007 Jan; 15(1):295-304. PubMed ID: 17049867 [TBL] [Abstract][Full Text] [Related]
19. The phylogenetic distribution of the glutaminyl-tRNA synthetase and Glu-tRNA Di Giulio M Biosystems; 2020 Oct; 196():104174. PubMed ID: 32535177 [TBL] [Abstract][Full Text] [Related]
20. Switching the amino acid specificity of an aminoacyl-tRNA synthetase. Agou F; Quevillon S; Kerjan P; Mirande M Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]