BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10486123)

  • 1. Enzymatic catalysis in cosolvent modified pressurized organic solvents.
    Sarkari M; Knutson BL; Chen CS
    Biotechnol Bioeng; 1999 Nov; 65(3):258-64. PubMed ID: 10486123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water activity effects on geranyl acetate synthesis catalyzed by novozym in supercritical ethane and in supercritical carbon dioxide.
    Peres C; Gomes da Silva MD; Barreiros S
    J Agric Food Chem; 2003 Mar; 51(7):1884-8. PubMed ID: 12643646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided control of water activity for lipase-catalyzed esterification in solvent-free systems.
    Won K; Lee SB
    Biotechnol Prog; 2001; 17(2):258-64. PubMed ID: 11312702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided real-time estimation of reaction conversion for lipase-catalyzed esterification in solvent-free systems.
    Won K; Jeong JC; Lee SB
    Biotechnol Bioeng; 2002 Sep; 79(7):795-803. PubMed ID: 12209802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt hydrates for in situ water activity control have acid-base effects on enzymes in nonaqueous media.
    Fontes N; Harper N; Halling PJ; Barreiros S
    Biotechnol Bioeng; 2003 Jun; 82(7):802-8. PubMed ID: 12701146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lipase-catalyzed hydrolysis of lutein diesters in non-aqueous media is favored at extremely low water activities.
    Mora-Pale JM; Pérez-Munguía S; González-Mejía JC; Dordick JS; Bárzana E
    Biotechnol Bioeng; 2007 Oct; 98(3):535-42. PubMed ID: 17724756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markedly improving Novozym 435-mediated regioselective acylation of 1-beta-D-arabinofuranosylcytosine by using co-solvent mixtures as the reaction media.
    Li XF; Zong MH; Wu H; Lou WY
    J Biotechnol; 2006 Jul; 124(3):552-60. PubMed ID: 16567014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water activity control: a way to improve the efficiency of continuous lipase esterification.
    Colombié S; Tweddell RJ; Condoret JS; Marty A
    Biotechnol Bioeng; 1998 Nov; 60(3):362-8. PubMed ID: 10099440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of immobilized lipase on hydrophobic superparamagnetic microspheres to catalyze esterification.
    Guo Z; Sun Y
    Biotechnol Prog; 2004; 20(2):500-6. PubMed ID: 15058995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of salt hydrate pairs for use in water control in enzyme catalysis in organic solvents.
    Zacharis E; Omar IC; Partridge J; Robb DA; Halling PJ
    Biotechnol Bioeng; 1997 Jul; 55(2):367-74. PubMed ID: 18636495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new irreversible enzyme-aided esterification method in organic solvents.
    Jeromin GE; Zoor A
    Biotechnol Lett; 2008 May; 30(5):925-8. PubMed ID: 18196460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water activity on the lipase catalyzed esterification of geraniol in ionic liquid [bmim]PF6.
    Barahona D; Pfromm PH; Rezac ME
    Biotechnol Bioeng; 2006 Feb; 93(2):318-24. PubMed ID: 16196056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of lipase-catalyzed esterification in supercritical CO(2).
    Marty A; Chulalaksananukul W; Willemot RM; Condoret JS
    Biotechnol Bioeng; 1992 Feb; 39(3):273-80. PubMed ID: 18600942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of substrate pretreatment and water activity on lipase-catalyzed cellulose acetylation in organic media.
    Yang K; Wang YJ; Kuo MI
    Biotechnol Prog; 2004; 20(4):1053-61. PubMed ID: 15296429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane.
    Kang IJ; Pfromm PH; Rezac ME
    J Biotechnol; 2005 Sep; 119(2):147-54. PubMed ID: 15941606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of n-octyl oleate enzymatic synthesis over Rhizomucor miehei lipase.
    Laudani CG; Habulin M; Primozic M; Knez Z; Della Porta G; Reverchon E
    Bioprocess Biosyst Eng; 2006 Jul; 29(2):119-27. PubMed ID: 16770594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chemically modified lipase preparation for catalyzing the transesterification reaction in even highly polar organic solvents.
    Solanki K; Gupta MN
    Bioorg Med Chem Lett; 2011 May; 21(10):2934-6. PubMed ID: 21463943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester by Carica papaya lipase in water-saturated organic solvents.
    Ng IS; Tsai SW
    Biotechnol Bioeng; 2005 Jan; 89(1):88-95. PubMed ID: 15543625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene glycol)-lipase complexes that are highly active and enantioselective in ionic liquids.
    Maruyama T; Yamamura H; Kotani T; Kamiya N; Goto M
    Org Biomol Chem; 2004 Apr; 2(8):1239-44. PubMed ID: 15064803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipase-catalyzed synthesis of fatty acid sugar ester using extremely supersaturated sugar solution in ionic liquids.
    Lee SH; Dang DT; Ha SH; Chang WJ; Koo YM
    Biotechnol Bioeng; 2008 Jan; 99(1):1-8. PubMed ID: 17570713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.