These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10486123)

  • 41. Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents.
    Valivety RH; Halling PJ; Macrae AR
    Biochim Biophys Acta; 1992 Feb; 1118(3):218-22. PubMed ID: 1737045
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immobilized lipase Candida sp. 99-125 catalyzed methanolysis of glycerol trioleate: solvent effect.
    Lu J; Nie K; Wang F; Tan T
    Bioresour Technol; 2008 Sep; 99(14):6070-4. PubMed ID: 18255281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide.
    Knez Z; Laudani CG; Habulin M; Reverchon E
    Biotechnol Bioeng; 2007 Aug; 97(6):1366-75. PubMed ID: 17221889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid.
    Itoh T; Matsushita Y; Abe Y; Han SH; Wada S; Hayase S; Kawatsura M; Takai S; Morimoto M; Hirose Y
    Chemistry; 2006 Dec; 12(36):9228-37. PubMed ID: 17029309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of urea on the enzymatic activity of a lipase entrapped in AOT-heptane-water reverse micellar solutions.
    Abuin E; Lissi E; Solar C
    J Colloid Interface Sci; 2005 Mar; 283(1):87-93. PubMed ID: 15694427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of salt hydrate pair on lipase-catalyzed regioselective monoacylation of sucrose.
    Kim JE; Han JJ; Yoon JH; Rhee JS
    Biotechnol Bioeng; 1998 Jan; 57(1):121-5. PubMed ID: 10099186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wheat germ lipase catalyzed kinetic resolution of secondary alcohols in non-aqueous media.
    Xia X; Wang YH; Yang B; Wang X
    Biotechnol Lett; 2009 Jan; 31(1):83-7. PubMed ID: 18777014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of ionic liquid physical properties on lipase activity and stability.
    Kaar JL; Jesionowski AM; Berberich JA; Moulton R; Russell AJ
    J Am Chem Soc; 2003 Apr; 125(14):4125-31. PubMed ID: 12670234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico prediction of medium effects on esterification equilibrium using the COSMO-RS method.
    Fermeglia M; Braiuca P; Gardossi L; Pricl S; Halling PJ
    Biotechnol Prog; 2006; 22(4):1146-52. PubMed ID: 16889392
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of reaction parameters on synthesis of citronellyl methacrylate by lipase-catalyzed transesterification.
    Athawale V; Manjrekar N; Athawale M
    Biotechnol Prog; 2003; 19(2):298-302. PubMed ID: 12675563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient kinetic resolution of (R,S)-1-trimethylsilylethanol via lipase-mediated enantioselective acylation in ionic liquids.
    Lou WY; Zong MH
    Chirality; 2006 Nov; 18(10):814-21. PubMed ID: 16917836
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen ions in microaqueous phase during lipase catalysed esterification in non-aqueous media.
    Kiran KR; Karanth NG; Divakar S
    Indian J Biochem Biophys; 2002 Apr; 39(2):101-5. PubMed ID: 22896896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzymatic transesterification of purine nucleoside having a low solubility in organic medium.
    Fan H; Kitagawa M; Raku T; Tokiwa Y
    Biotechnol Lett; 2004 Aug; 26(16):1261-4. PubMed ID: 15483383
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pressure affects enzyme function in organic media.
    Kim J; Dordick JS
    Biotechnol Bioeng; 1993 Sep; 42(6):772-6. PubMed ID: 18613111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Catalytic properties of cholesterol oxidase in the cholesterol oxidation reaction in an aqueous medium].
    AleksandrovskiÄ­ IaA
    Biokhimiia; 1987 Oct; 52(10):1696-703. PubMed ID: 3480759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The solvent influence on the positional selectivity of Novozym 435 during 1,3-diolein synthesis by esterification.
    Duan ZQ; Du W; Liu DH
    Bioresour Technol; 2010 Apr; 101(7):2568-71. PubMed ID: 20022242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipase-catalyzed cellulose acetylation in aqueous and organic media.
    Yang K; Wang YJ
    Biotechnol Prog; 2003; 19(6):1664-71. PubMed ID: 14656139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novozyme 435-catalyzed efficient acylation of 3-n-butylphthalide in organic medium.
    He L; Sun J; Xu Y; Sun Z; Zheng C
    Prep Biochem Biotechnol; 2008; 38(4):376-88. PubMed ID: 18800300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The utility of cyclodextrins in lipase-catalyzed transesterification in organic solvents: enhanced reaction rate and enantioselectivity.
    Ghanem A
    Org Biomol Chem; 2003 Apr; 1(8):1282-91. PubMed ID: 12929657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymatic synthesis of sorbitan esters using a low-boiling-point azeotrope as a reaction solvent.
    Sarney DB; Barnard MJ; Virto M; Vulfson EN
    Biotechnol Bioeng; 1997 May; 54(4):351-6. PubMed ID: 18634102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.