BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 10486188)

  • 1. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis.
    Reinholz MM; Merkle CM; Poduslo JF
    Exp Neurol; 1999 Sep; 159(1):204-16. PubMed ID: 10486188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ebselen analogues delay disease onset and its course in fALS by on-target SOD-1 engagement.
    Watanabe S; Amporndanai K; Awais R; Latham C; Awais M; O'Neill PM; Yamanaka K; Hasnain SS
    Sci Rep; 2024 May; 14(1):12118. PubMed ID: 38802492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translating SOD1 Gene Silencing toward the Clinic: A Highly Efficacious, Off-Target-free, and Biomarker-Supported Strategy for fALS.
    Iannitti T; Scarrott JM; Likhite S; Coldicott IRP; Lewis KE; Heath PR; Higginbottom A; Myszczynska MA; Milo M; Hautbergue GM; Meyer K; Kaspar BK; Ferraiuolo L; Shaw PJ; Azzouz M
    Mol Ther Nucleic Acids; 2018 Sep; 12():75-88. PubMed ID: 30195799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Neuropathological Features in the SOD1-G93A Low Copy Number Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.
    Molnar-Kasza A; Hinteregger B; Neddens J; Rabl R; Flunkert S; Hutter-Paier B
    Front Mol Neurosci; 2021; 14():681868. PubMed ID: 34248499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles.
    René CA; Parks RJ
    Pharmaceutics; 2021 Apr; 13(4):. PubMed ID: 33916841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies.
    Hemerková P; Vališ M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33809730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases.
    Nandi A; Yan LJ; Jana CK; Das N
    Oxid Med Cell Longev; 2019; 2019():9613090. PubMed ID: 31827713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pericytes Extend Survival of ALS SOD1 Mice and Induce the Expression of Antioxidant Enzymes in the Murine Model and in IPSCs Derived Neuronal Cells from an ALS Patient.
    Coatti GC; Frangini M; Valadares MC; Gomes JP; Lima NO; Cavaçana N; Assoni AF; Pelatti MV; Birbrair A; de Lima ACP; Singer JM; Rocha FMM; Da Silva GL; Mantovani MS; Macedo-Souza LI; Ferrari MFR; Zatz M
    Stem Cell Rev Rep; 2017 Oct; 13(5):686-698. PubMed ID: 28710685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis.
    Alves CJ; Maximino JR; Chadi G
    Front Cell Neurosci; 2015; 9():332. PubMed ID: 26339226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyotrophic Lateral Sclerosis and Metabolomics: Clinical Implication and Therapeutic Approach.
    Kumar A; Ghosh D; Singh RL
    J Biomark; 2013; 2013():538765. PubMed ID: 26317018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UCP2 overexpression worsens mitochondrial dysfunction and accelerates disease progression in a mouse model of amyotrophic lateral sclerosis.
    Peixoto PM; Kim HJ; Sider B; Starkov A; Horvath TL; Manfredi G
    Mol Cell Neurosci; 2013 Nov; 57():104-10. PubMed ID: 24141050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS).
    Mead RJ; Bennett EJ; Kennerley AJ; Sharp P; Sunyach C; Kasher P; Berwick J; Pettmann B; Battaglia G; Azzouz M; Grierson A; Shaw PJ
    PLoS One; 2011; 6(8):e23244. PubMed ID: 21876739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One universal common endpoint in mouse models of amyotrophic lateral sclerosis.
    Solomon JA; Tarnopolsky MA; Hamadeh MJ
    PLoS One; 2011; 6(6):e20582. PubMed ID: 21687686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNS delivery via adsorptive transcytosis.
    Hervé F; Ghinea N; Scherrmann JM
    AAPS J; 2008 Sep; 10(3):455-72. PubMed ID: 18726697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR microimaging of amyloid plaques in Alzheimer's disease transgenic mice.
    Wengenack TM; Jack CR; Garwood M; Poduslo JF
    Eur J Nucl Med Mol Imaging; 2008 Mar; 35 Suppl 1():S82-8. PubMed ID: 18239918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for redox-based therapy in neurodegenerative diseases.
    Friedlich AL; Beal MF
    Neurotox Res; 2000; 2(2-3):229-37. PubMed ID: 16787843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective and neurorestorative strategies for neuronal injury.
    Beal MF; Palomo T; Kostrzewa RM; Archer T
    Neurotox Res; 2000; 2(2-3):71-84. PubMed ID: 16787833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis.
    Turner BJ; Atkin JD; Farg MA; Zang DW; Rembach A; Lopes EC; Patch JD; Hill AF; Cheema SS
    J Neurosci; 2005 Jan; 25(1):108-17. PubMed ID: 15634772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyotrophic lateral sclerosis: progress and prospects for treatment.
    Dib M
    Drugs; 2003; 63(3):289-310. PubMed ID: 12534333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment.
    Halliwell B
    Drugs Aging; 2001; 18(9):685-716. PubMed ID: 11599635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.