BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 10486263)

  • 21. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling.
    Sehr P; Joseph G; Genth H; Just I; Pick E; Aktories K
    Biochemistry; 1998 Apr; 37(15):5296-304. PubMed ID: 9548761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Signal transduction by Rac small G proteins in phagocytes].
    Dorseuil O; Gacon G
    C R Seances Soc Biol Fil; 1997; 191(2):237-46. PubMed ID: 9255350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation-dependent change in the conformation of the C-terminal end of p47phox.
    Park JW; Babior BM
    Biochemistry; 1997 Jun; 36(24):7474-80. PubMed ID: 9200696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2.
    Kerkhoff C; Nacken W; Benedyk M; Dagher MC; Sopalla C; Doussiere J
    FASEB J; 2005 Mar; 19(3):467-9. PubMed ID: 15642721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delineation of the Cdc42/Rac-binding domain of p21-activated kinase.
    Thompson G; Owen D; Chalk PA; Lowe PN
    Biochemistry; 1998 May; 37(21):7885-91. PubMed ID: 9601050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NADPH oxidase activity of neutrophil specific granules: requirements for cytosolic components and evidence of assembly during cell activation.
    Ambruso DR; Cusack N; Thurman G
    Mol Genet Metab; 2004 Apr; 81(4):313-21. PubMed ID: 15059619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases.
    Miyano K; Koga H; Minakami R; Sumimoto H
    Biochem J; 2009 Aug; 422(2):373-82. PubMed ID: 19534724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: roles for their regulatory proteins.
    Sumimoto H; Ueno N; Yamasaki T; Taura M; Takeya R
    Jpn J Infect Dis; 2004 Oct; 57(5):S24-5. PubMed ID: 15507762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct interaction of actin with p47(phox) of neutrophil NADPH oxidase.
    Tamura M; Kai T; Tsunawaki S; Lambeth JD; Kameda K
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1186-90. PubMed ID: 11027608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system.
    Fuchs A; Dagher MC; Vignais PV
    J Biol Chem; 1995 Mar; 270(11):5695-7. PubMed ID: 7890694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leu505 of Nox2 is crucial for optimal p67phox-dependent activation of the flavocytochrome b558 during phagocytic NADPH oxidase assembly.
    Li XJ; Fieschi F; Paclet MH; Grunwald D; Campion Y; Gaudin P; Morel F; Stasia MJ
    J Leukoc Biol; 2007 Jan; 81(1):238-49. PubMed ID: 17060362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1.
    Abo A; Pick E; Hall A; Totty N; Teahan CG; Segal AW
    Nature; 1991 Oct; 353(6345):668-70. PubMed ID: 1922386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel cytosolic component, p40phox, of respiratory burst oxidase associates with p67phox and is absent in patients with chronic granulomatous disease who lack p67phox.
    Tsunawaki S; Mizunari H; Nagata M; Tatsuzawa O; Kuratsuji T
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1378-87. PubMed ID: 8147882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses.
    El-Benna J; Dang PM; Gougerot-Pocidalo MA; Elbim C
    Arch Immunol Ther Exp (Warsz); 2005; 53(3):199-206. PubMed ID: 15995580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains.
    Massenet C; Chenavas S; Cohen-Addad C; Dagher MC; Brandolin G; Pebay-Peyroula E; Fieschi F
    J Biol Chem; 2005 Apr; 280(14):13752-61. PubMed ID: 15657040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras.
    Sarfstein R; Gorzalczany Y; Mizrahi A; Berdichevsky Y; Molshanski-Mor S; Weinbaum C; Hirshberg M; Dagher MC; Pick E
    J Biol Chem; 2004 Apr; 279(16):16007-16. PubMed ID: 14761978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67PHOX and cytochrome b558 II.
    Dang PM; Cross AR; Quinn MT; Babior BM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4262-5. PubMed ID: 11917128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The PC motif: a novel and evolutionarily conserved sequence involved in interaction between p40phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase.
    Nakamura R; Sumimoto H; Mizuki K; Hata K; Ago T; Kitajima S; Takeshige K; Sakaki Y; Ito T
    Eur J Biochem; 1998 Feb; 251(3):583-9. PubMed ID: 9490029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation.
    Kwong CH; Adams AG; Leto TL
    J Biol Chem; 1995 Aug; 270(34):19868-72. PubMed ID: 7649999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.