BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 10487380)

  • 1. Evaluation of the BOD POD for assessing body fat in collegiate football players.
    Collins MA; Millard-Stafford ML; Sparling PB; Snow TK; Rosskopf LB; Webb SA; Omer J
    Med Sci Sports Exerc; 1999 Sep; 31(9):1350-6. PubMed ID: 10487380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Body Composition Methods for Estimating Body Fat Percentage in Lower Limb Prosthesis Users.
    Smith JD; Guerra G; Symons TB; Kwon EH; Yoon EJ
    Can Prosthet Orthot J; 2023; 6(1):41605. PubMed ID: 38873009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges in body composition assessment using air-displacement plethysmography by BOD POD in pediatric and young adult patients.
    Bijlsma A; van Beijsterveldt IALP; Vermeulen MJ; Beunders VAA; Dorrepaal DJ; Boeters SCM; van den Akker ELT; Vlug LE; de Koning BAE; Bracké KFM; Dieleman GC; Scheffers LE; Hagenaar DA; Affourtit P; Bindels-de Heus KGCB; Hokken-Koelega ACS; Joosten KFM
    Clin Nutr; 2023 Sep; 42(9):1588-1594. PubMed ID: 37478812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of air displacement plethysmography to hydrostatic weighing for estimating total body density in children.
    Claros G; Hull HR; Fields DA
    BMC Pediatr; 2005 Sep; 5():37. PubMed ID: 16153297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No Changes in Body Composition in NCAA Division I Collegiate Football Players because of COVID-19 Restrictions.
    Czeck MA; Roelofs EJ; Evanoff NG; Dengel DR
    J Strength Cond Res; 2022 Jun; 36(6):1749-1752. PubMed ID: 35438676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of body composition by air-displacement plethysmography: influence of body temperature and moisture.
    Fields DA; Higgins PB; Hunter GR
    Dyn Med; 2004 Apr; 3(1):3. PubMed ID: 15059287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject positioning in the BOD POD® only marginally affects measurement of body volume and estimation of percent body fat in young adult men.
    Peeters MW
    PLoS One; 2012; 7(3):e32722. PubMed ID: 22461887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outcome measures in Angelman syndrome.
    Hagenaar DA; Bindels-de Heus KGCB; van Gils MM; van den Berg L; Ten Hoopen LW; Affourtit P; Pel JJM; Joosten KFM; Hillegers MHJ; Moll HA; de Wit MY; Dieleman GC; Mous SE
    J Neurodev Disord; 2024 Mar; 16(1):6. PubMed ID: 38429713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Shape-based Body Composition Prediction Model Using Machine Learning.
    Lu Y; McQuade S; Hahn JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3999-4002. PubMed ID: 30441235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players.
    Wilder N; Deivert RG; Hagerman F; Gilders R
    J Athl Train; 2001 Jun; 36(2):124-129. PubMed ID: 12937451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Percent body fat estimations in college women using field and laboratory methods: a three-compartment model approach.
    Moon JR; Hull HR; Tobkin SE; Teramoto M; Karabulut M; Roberts MD; Ryan ED; Kim SJ; Dalbo VJ; Walter AA; Smith AT; Cramer JT; Stout JR
    J Int Soc Sports Nutr; 2007 Nov; 4():16. PubMed ID: 17988393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body composition assessment in 6-month-old infants: A comparison of two- and three-compartment models using data from the Baby-bod study.
    Herath MP; Beckett JM; Jayasinghe S; Byrne NM; Ahuja KDK; Hills AP
    Eur J Clin Nutr; 2024 Jan; ():. PubMed ID: 38233534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of novel calibration model(s) to predict whole-body density in professional football players.
    Mills C; De Ste Croix M; James D; Cooper SM
    Sci Med Footb; 2024 May; 8(2):170-178. PubMed ID: 36624982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A More Comfortable Method for Hydrostatic Weighing: Head above Water at Total Lung Capacity.
    White E; Bergen S; Berggren A; Brinkman L; Carman B; Crouse L; Hoffmann E; Twedt S
    J Funct Morphol Kinesiol; 2024 Feb; 9(1):. PubMed ID: 38535421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the BOD POD for estimating percent body fat in collegiate track and field female athletes: a comparison of four methods.
    Bentzur KM; Kravitz L; Lockner DW
    J Strength Cond Res; 2008 Nov; 22(6):1985-91. PubMed ID: 18978611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body-composition assessment via air-displacement plethysmography in adults and children: a review.
    Fields DA; Goran MI; McCrory MA
    Am J Clin Nutr; 2002 Mar; 75(3):453-67. PubMed ID: 11864850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the Bod Pod and dual energy x-ray absorptiometry in men.
    Ball SD; Altena TS
    Physiol Meas; 2004 Jun; 25(3):671-8. PubMed ID: 15253118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the BOD POD with the four-compartment model in adult females.
    Fields DA; Wilson GD; Gladden LB; Hunter GR; Pascoe DD; Goran MI
    Med Sci Sports Exerc; 2001 Sep; 33(9):1605-10. PubMed ID: 11528352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a new air displacement plethysmograph for measuring human body composition.
    McCrory MA; Gomez TD; Bernauer EM; Molé PA
    Med Sci Sports Exerc; 1995 Dec; 27(12):1686-91. PubMed ID: 8614326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of air displacement plethysmography for assessing body composition.
    Wagner DR; Heyward VH; Gibson AL
    Med Sci Sports Exerc; 2000 Jul; 32(7):1339-44. PubMed ID: 10912902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.