BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 10487894)

  • 1. Clinical Outcomes and Return-to-Sport Rates following Fragment Fixation Using Hydroxyapatite/Poly-L-Lactate Acid Threaded Pins for Knee Osteochondritis Dissecans: A Case Series.
    Shimizu T; Murata Y; Nakashima H; Nishimura H; Suzuki H; Kawasaki M; Tsukamoto M; Sakai A; Uchida S
    Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fixation devices made of poly-L-lactide composite for rib reconstruction after thoracotomy.
    Fukunaga N; Sato H; Wakami T; Shimoji A; Mori O; Yoshizawa K; Tamura N
    J Cardiothorac Surg; 2024 Mar; 19(1):130. PubMed ID: 38491553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixation of intra-articular calcaneal fractures: A comparative study of the postoperative outcome between HA/PPLA screws and locking plates.
    Usami T; Takada N; Nishida K; Sakai H; Iwata H; Yonezu H; Sekiya I; Nagaya Y; Ueki Y; Murakami H; Kuroyanagi G
    Heliyon; 2023 Mar; 9(3):e14046. PubMed ID: 36915544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Narrative Review of u-HA/PLLA, a Bioactive Resorbable Reconstruction Material: Applications in Oral and Maxillofacial Surgery.
    Ngo HX; Bai Y; Sha J; Ishizuka S; Toda E; Osako R; Kato A; Morioka R; Ramanathan M; Tatsumi H; Okui T; Kanno T
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Stability of Hydroxyapatite/Poly-L-Lactide Fixation for Unilateral Angle Fracture of the Mandible Assessed Using a Finite Element Analysis Model.
    Park B; Jung BT; Kim WH; Lee JH; Kim B; Lee JH
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasible Advantage of Bioactive/Bioresorbable Devices Made of Forged Composites of Hydroxyapatite Particles and Poly-L-lactide in Alveolar Bone Augmentation: A Preliminary Study.
    Sukegawa S; Kawai H; Nakano K; Kanno T; Takabatake K; Nagatsuka H; Furuki Y
    Int J Med Sci; 2019; 16(2):311-317. PubMed ID: 30745812
    [No Abstract]   [Full Text] [Related]  

  • 7. Unsintered Hydroxyapatite and Poly-L-Lactide Composite Screws/Plates for Stabilizing β-Tricalcium Phosphate Bone Implants.
    Sakamoto A; Okamoto T; Matsuda S
    Clin Orthop Surg; 2018 Jun; 10(2):253-259. PubMed ID: 29854351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medial Wall Orbital Reconstruction using Unsintered Hydroxyapatite Particles/Poly L-Lactide Composite Implants.
    Park H; Kim HS; Lee BI
    Arch Craniofac Surg; 2015 Dec; 16(3):125-130. PubMed ID: 28913237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Evaluation of an Unsintered Hydroxyapatite/Poly-L-Lactide Osteoconductive Composite Device for the Internal Fixation of Maxillofacial Fractures.
    Sukegawa S; Kanno T; Katase N; Shibata A; Takahashi Y; Furuki Y
    J Craniofac Surg; 2016 Sep; 27(6):1391-7. PubMed ID: 27428913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications.
    Dorozhkin SV
    J Funct Biomater; 2015 Aug; 6(3):708-832. PubMed ID: 26262645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A giant periosteal chondroma of the distal femur successfully reconstructed with synthetic bone grafts and a bioresorbable plate: a case report.
    Imura Y; Shigi A; Outani H; Hamada K; Tamura H; Morii E; Myoui A; Yoshikawa H; Naka N
    World J Surg Oncol; 2014 Nov; 12():354. PubMed ID: 25416085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocomposites and hybrid biomaterials based on calcium orthophosphates.
    Dorozhkin SV
    Biomatter; 2011; 1(1):3-56. PubMed ID: 23507726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites.
    Shen L; Yang H; Ying J; Qiao F; Peng M
    J Mater Sci Mater Med; 2009 Nov; 20(11):2259-65. PubMed ID: 19488680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of filler type on the mechanical properties of self-reinforced polylactide-calcium phosphate composites.
    Bleach NC; Tanner KE; Kellomäki M; Törmälä P
    J Mater Sci Mater Med; 2001; 12(10-12):911-5. PubMed ID: 15348339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bonding behavior of ultrahigh strength unsintered hydroxyapatite particles/poly(L-lactide) composites to surface of tibial cortex in rabbits.
    Yasunaga T; Matsusue Y; Furukawa T; Shikinami Y; Okuno M; Nakamura T
    J Biomed Mater Res; 1999 Dec; 47(3):412-9. PubMed ID: 10487894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA).
    Shikinami Y; Matsusue Y; Nakamura T
    Biomaterials; 2005 Sep; 26(27):5542-51. PubMed ID: 15860210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures.
    Furukawa T; Matsusue Y; Yasunaga T; Nakagawa Y; Okada Y; Shikinami Y; Okuno M; Nakamura T
    J Biomed Mater Res; 2000 Jun; 50(3):410-9. PubMed ID: 10737884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigation-Assisted Orbital Trauma Reconstruction Using a Bioactive Osteoconductive/Bioresorbable u-HA/PLLA System.
    Kanno T; Sukegawa S; Karino M; Furuki Y
    J Maxillofac Oral Surg; 2019 Sep; 18(3):329-338. PubMed ID: 31371870
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.